IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1254-d745157.html
   My bibliography  Save this article

Mechanism of Magnetic Nanoparticle Enhanced Microwave Pyrolysis for Oily Sludge

Author

Listed:
  • Hongyuan Qi

    (College of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China
    Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil & Gas Reservoirs, Xi’an Shiyou University, Xi’an 710065, China)

  • Huayi Jiang

    (College of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China
    Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil & Gas Reservoirs, Xi’an Shiyou University, Xi’an 710065, China)

  • Yanzhen You

    (College of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China
    Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil & Gas Reservoirs, Xi’an Shiyou University, Xi’an 710065, China)

  • Juan Hu

    (College of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China
    Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil & Gas Reservoirs, Xi’an Shiyou University, Xi’an 710065, China)

  • Yulong Wang

    (College of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China
    Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil & Gas Reservoirs, Xi’an Shiyou University, Xi’an 710065, China)

  • Zhe Wu

    (College of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China
    Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil & Gas Reservoirs, Xi’an Shiyou University, Xi’an 710065, China)

  • Hongxin Qi

    (Offshore Oil Production Plant of Shengli Oilfield, SINOPEC (China Petroleum & Chemical Corporation), Dongying 257237, China)

Abstract

In view of the high dielectric constant of magnetic nanoparticles, this paper intends to use it as a new type of microwave absorbing medium to accelerate the microwave pyrolysis process of oily sludge. Microwave thermogravimetric reaction and pyrolysis product staged collection devices were established, respectively. The main stage of pyrolysis process of oily sludge was divided based on the thermogravimetric experiments. Mechanism was studied through the characteristics of pyrolysis products and reaction kinetics simulation. Experimental results showed that the addition of magnetic ZnFe 2 O 4 particle did not change the microwave pyrolysis process of oily sludge and the pyrolysis efficiency could be improved. Pyrolysis process was divided into three stages, rapid heating and water evaporation stage (20~150 °C), light component evaporation stage (150~240 °C) and heavy component cracking stage (240~300 °C). Due to the addition of magnetic ZnFe 2 O 4 particles, the content of C 4 ~C 12 increased by 3.5%, and the content of C 18 + decreased by 4.1%, indicating that more recombinant components participated in the reaction pyrolysis to form light gas components. The kinetic analysis showed that the activation energy of oily sludge decreased by 36.49% and the pre-exponential factor decreased by 91.39% in stage III, indicating that magnetic nanoparticles had good catalytic activity.

Suggested Citation

  • Hongyuan Qi & Huayi Jiang & Yanzhen You & Juan Hu & Yulong Wang & Zhe Wu & Hongxin Qi, 2022. "Mechanism of Magnetic Nanoparticle Enhanced Microwave Pyrolysis for Oily Sludge," Energies, MDPI, vol. 15(4), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1254-:d:745157
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1254/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chien Li Lee & Cheng-Hsien Tsai & Chih-Ju G. Jou, 2020. "Energy and Resource Utilization of Refining Industry Oil Sludge by Microwave Treatment," Sustainability, MDPI, vol. 12(17), pages 1-9, August.
    2. Cheng, Shuo & Wang, Yuhua & Fumitake, Takahashi & Kouji, Tokimatsu & Li, Aimin & Kunio, Yoshikawa, 2017. "Effect of steam and oil sludge ash additive on the products of oil sludge pyrolysis," Applied Energy, Elsevier, vol. 185(P1), pages 146-157.
    3. Chiarioni, A. & Reverberi, A.P. & Fabiano, B. & Dovì, V.G., 2006. "An improved model of an ASR pyrolysis reactor for energy recovery," Energy, Elsevier, vol. 31(13), pages 2460-2468.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Wang & Xiaogang Li & Jingyi Zhu & Zhaozhong Yang & Jie Zhou & Liangping Yi, 2022. "Numerical Simulation of Oil Shale Pyrolysis under Microwave Irradiation Based on a Three-Dimensional Porous Medium Multiphysics Field Model," Energies, MDPI, vol. 15(9), pages 1-20, April.
    2. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hakimian, Hanie & Pyo, Sumin & Kim, Young-Min & Jae, Jungho & Show, Pau Loke & Rhee, Gwang Hoon & Chen, Wei-Hsin & Park, Young-Kwon, 2022. "Increased aromatics production by co-feeding waste oil sludge to the catalytic pyrolysis of cellulose," Energy, Elsevier, vol. 239(PD).
    2. Miranda, Miguel & Cabrita, I. & Pinto, Filomena & Gulyurtlu, I., 2013. "Mixtures of rubber tyre and plastic wastes pyrolysis: A kinetic study," Energy, Elsevier, vol. 58(C), pages 270-282.
    3. Chen, Xiaoling & Zhang, Yongxing & Xu, Baoshen & Li, Yifan, 2022. "A simple model for estimation of higher heating value of oily sludge," Energy, Elsevier, vol. 239(PA).
    4. Luo, Juan & Ma, Rui & Huang, Xiaofei & Sun, Shichang & Wang, Hao, 2020. "Bio-fuels generation and the heat conversion mechanisms in different microwave pyrolysis modes of sludge," Applied Energy, Elsevier, vol. 266(C).
    5. Bujak, Janusz Wojciech, 2015. "Thermal utilization (treatment) of plastic waste," Energy, Elsevier, vol. 90(P2), pages 1468-1477.
    6. Liu, Zhongzhe & Hughes, Matthew & Tong, Yiran & Zhou, Jizhi & Kreutter, William & Valtierra, Danny & Singer, Simcha & Zitomer, Daniel & McNamara, Patrick, 2021. "Enhanced energy and resource recovery via synergistic catalytic pyrolysis of byproducts from thermal processing of wastewater solids," Renewable Energy, Elsevier, vol. 177(C), pages 475-481.
    7. Uyar, Mahmut & Aydın, Hüseyin, 2022. "Production of low sulfur diesel-like fuel from crude oil wastes by pyrolytic distillation and its usage in a diesel engine," Energy, Elsevier, vol. 244(PA).
    8. Zhang, Xitong & Xu, Jiayu & Ran, Shuai & Gao, Ying & Lyu, Yinong & Pan, Yueshen & Cao, Fei & Lin, Yunhao & Yang, Zixu & Wang, Zhongxian & Guo, Dandan & Wang, Qi & Zhu, Lin & Zhu, Yuezhao, 2022. "Experimental study on catalytic pyrolysis of oily sludge for H2 production under new nickel-ore-based catalysts," Energy, Elsevier, vol. 249(C).
    9. Bujak, Janusz Wojciech, 2015. "Production of waste energy and heat in hospital facilities," Energy, Elsevier, vol. 91(C), pages 350-362.
    10. Sajadi, Mahdi & Mokhtarani, Nader, 2023. "Catalytic pyrolysis of oil sludge using the nano alumina powder," Energy, Elsevier, vol. 270(C).
    11. Liu, Huidong & Xu, Guoren & Li, Guibai, 2021. "Autocatalytic sludge pyrolysis by biochar derived from pharmaceutical sludge for biogas upgrading," Energy, Elsevier, vol. 229(C).
    12. Bujak, Janusz Wojciech, 2015. "Heat recovery from thermal treatment of medical waste," Energy, Elsevier, vol. 90(P2), pages 1721-1732.
    13. Sun, Yongqi & Chen, Jingjing & Zhang, Zuotai, 2019. "General roles of sludge ash, CaO and Al2O3 on the sludge pyrolysis toward clean utilizations," Applied Energy, Elsevier, vol. 233, pages 412-423.
    14. Hongyan Mu & Min Zhang & Shanshan Sun & Zhaozheng Song & Yijing Luo & Zhongzhi Zhang & Qingzhe Jiang, 2021. "Pilot-Scale Airlift Bioreactor with Function-Enhanced Microbes for the Reduction of Refinery Excess Sludge," IJERPH, MDPI, vol. 18(13), pages 1-12, June.
    15. Quan, Hongping & Li, Pengfei & Duan, Wenmeng & Chen, Liao & Xing, Langman, 2019. "A series of methods for investigating the effect of a flow improver on the asphaltene and resin of crude oil," Energy, Elsevier, vol. 187(C).
    16. Cheng, Shuo & Zhang, Hongtao & Chang, Fengmin & Zhang, Feng & Wang, Kaijun & Qin, Ya & Huang, Tixiao, 2019. "Combustion behavior and thermochemical treatment scheme analysis of oil sludges and oil sludge semicokes," Energy, Elsevier, vol. 167(C), pages 575-587.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1254-:d:745157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.