IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9622-d1007669.html
   My bibliography  Save this article

Sustainable Hybrid Marine Power Systems for Power Management Optimisation: A Review

Author

Listed:
  • Sharul Baggio Roslan

    (Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore)

  • Dimitrios Konovessis

    (Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, 100 Montrose St., Glasgow G4 0LZ, UK)

  • Zhi Yung Tay

    (Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore)

Abstract

The increasing environmental concerns due to emissions from the shipping industry have accelerated the interest in developing sustainable energy sources and alternatives to traditional hydrocarbon fuel sources to reduce carbon emissions. Predominantly, a hybrid power system is used via a combination of alternative energy sources with hydrocarbon fuel due to the relatively small energy efficiency of the former as compared to the latter. For such a hybrid system to operate efficiently, the power management on the multiple power sources has to be optimised and the power requirements for different vessel types with varying loading operation profiles have to be understood. This can be achieved by using energy management systems (EMS) or power management systems (PMS) and control methods for hybrid marine power systems. This review paper focuses on the different EMSs and control strategies adopted to optimise power management as well as reduce fuel consumption and thus the carbon emission for hybrid vessel systems. This paper first presents the different commonly used hybrid propulsion systems, i.e., diesel–mechanical, diesel–electric, fully electric and other hybrid systems. Then, a comprehensive review of the different EMSs and control method strategies is carried out, followed by a comparison of the alternative energy sources to diesel power. Finally, the gaps, challenges and future works for hybrid systems are discussed.

Suggested Citation

  • Sharul Baggio Roslan & Dimitrios Konovessis & Zhi Yung Tay, 2022. "Sustainable Hybrid Marine Power Systems for Power Management Optimisation: A Review," Energies, MDPI, vol. 15(24), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9622-:d:1007669
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9622/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9622/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dedes, Eleftherios K. & Hudson, Dominic A. & Turnock, Stephen R., 2012. "Assessing the potential of hybrid energy technology to reduce exhaust emissions from global shipping," Energy Policy, Elsevier, vol. 40(C), pages 204-218.
    2. Geertsma, R.D. & Negenborn, R.R. & Visser, K. & Hopman, J.J., 2017. "Design and control of hybrid power and propulsion systems for smart ships: A review of developments," Applied Energy, Elsevier, vol. 194(C), pages 30-54.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linda Barelli & Gianni Bidini & Federico Gallorini & Francesco Iantorno & Nicola Pane & Panfilo Andrea Ottaviano & Lorenzo Trombetti, 2018. "Dynamic Modeling of a Hybrid Propulsion System for Tourist Boat," Energies, MDPI, vol. 11(10), pages 1-17, September.
    2. Perčić, Maja & Frković, Lovro & Pukšec, Tomislav & Ćosić, Boris & Li, Oi Lun & Vladimir, Nikola, 2022. "Life-cycle assessment and life-cycle cost assessment of power batteries for all-electric vessels for short-sea navigation," Energy, Elsevier, vol. 251(C).
    3. Inal, Omer Berkehan & Charpentier, Jean-Frédéric & Deniz, Cengiz, 2022. "Hybrid power and propulsion systems for ships: Current status and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Miretti, Federico & Misul, Daniela & Gennaro, Giulio & Ferrari, Antonio, 2022. "Hybridizing waterborne transport: Modeling and simulation of low-emissions hybrid waterbuses for the city of Venice," Energy, Elsevier, vol. 244(PB).
    5. Jagdesh Kumar & Aushiq Ali Memon & Lauri Kumpulainen & Kimmo Kauhaniemi & Omid Palizban, 2019. "Design and Analysis of New Harbour Grid Models to Facilitate Multiple Scenarios of Battery Charging and Onshore Supply for Modern Vessels," Energies, MDPI, vol. 12(12), pages 1-18, June.
    6. Nuchturee, Chalermkiat & Li, Tie & Xia, Hongpu, 2020. "Energy efficiency of integrated electric propulsion for ships – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Acanfora, Maria & Balsamo, Flavio & Fantauzzi, Maurizio & Lauria, Davide & Proto, Daniela, 2023. "Design of an electrical energy storage system for hybrid diesel electric ship propulsion aimed at load levelling in irregular wave conditions," Applied Energy, Elsevier, vol. 350(C).
    8. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    9. Sun, Xiaojun & Yao, Chong & Song, Enzhe & Yang, Qidong & Yang, Xuchang, 2022. "Optimal control of transient processes in marine hybrid propulsion systems: Modeling, optimization and performance enhancement," Applied Energy, Elsevier, vol. 321(C).
    10. Hou, Jun & Song, Ziyou & Park, Hyeongjun & Hofmann, Heath & Sun, Jing, 2018. "Implementation and evaluation of real-time model predictive control for load fluctuations mitigation in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 230(C), pages 62-77.
    11. Hao Jin & Xinhang Yang, 2023. "Bilevel Optimal Sizing and Operation Method of Fuel Cell/Battery Hybrid All-Electric Shipboard Microgrid," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
    12. Guoling Wang & Xu Liu & Zhenyu Li & Shunxiao Xu & Zhe Chen, 2018. "An Adaptive Grid Voltage/Frequency Tracking Method Based on SOGIs on a Shipboard PV–Diesel-Battery Hybrid Power System," Energies, MDPI, vol. 11(4), pages 1-20, March.
    13. Diab, Fahd & Lan, Hai & Ali, Salwa, 2016. "Novel comparison study between the hybrid renewable energy systems on land and on ship," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 452-463.
    14. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Shen, Boyang & Long, Teng, 2020. "A review of multi-energy hybrid power system for ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    15. Ahmadhon Akbarkhonovich Kamolov & Suhyun Park, 2021. "Prediction of Depth of Seawater Using Fuzzy C-Means Clustering Algorithm of Crowdsourced SONAR Data," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    16. Ye, Xuemin & Wang, Jia & Li, Chunxi, 2016. "Performance and emission reduction potential of renewable energy aided coal-fired power generation systems," Energy, Elsevier, vol. 113(C), pages 966-979.
    17. Barone, Giovanni & Buonomano, Annamaria & Del Papa, Gianluca & Maka, Robert & Palombo, Adolfo, 2023. "How to achieve energy efficiency and sustainability of large ships: a new tool to optimize the operation of on-board diesel generators," Energy, Elsevier, vol. 282(C).
    18. Planakis, Nikolaos & Papalambrou, George & Kyrtatos, Nikolaos, 2022. "Ship energy management system development and experimental evaluation utilizing marine loading cycles based on machine learning techniques," Applied Energy, Elsevier, vol. 307(C).
    19. John E. Candelo-Beccera & Leonardo Bohórquez Maldonado & Edwin Paipa Sanabria & Hernán Vergara Pestana & José Jiménez García, 2023. "Technological Alternatives for Electric Propulsion Systems in the Waterway Sector," Energies, MDPI, vol. 16(23), pages 1-16, November.
    20. Wang, Zhuang & Chen, Li & Wang, Bin & Huang, Lianzhong & Wang, Kai & Ma, Ranqi, 2023. "Integrated optimization of speed schedule and energy management for a hybrid electric cruise ship considering environmental factors," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9622-:d:1007669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.