IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9152-d991731.html
   My bibliography  Save this article

Small-Scale Hybrid and Polygeneration Renewable Energy Systems: Energy Generation and Storage Technologies, Applications, and Analysis Methodology

Author

Listed:
  • Maksymilian Homa

    (Department of Sustainable Energy Development, Faculty of Energy and Fuels, AGH University of Science and Technology, 30-059 Krakow, Poland)

  • Anna Pałac

    (Department of Sustainable Energy Development, Faculty of Energy and Fuels, AGH University of Science and Technology, 30-059 Krakow, Poland)

  • Maciej Żołądek

    (Department of Sustainable Energy Development, Faculty of Energy and Fuels, AGH University of Science and Technology, 30-059 Krakow, Poland)

  • Rafał Figaj

    (Department of Sustainable Energy Development, Faculty of Energy and Fuels, AGH University of Science and Technology, 30-059 Krakow, Poland)

Abstract

The energy sector is nowadays facing new challenges, mainly in the form of a massive shifting towards renewable energy sources as an alternative to fossil fuels and a diffusion of the distributed generation paradigm, which involves the application of small-scale energy generation systems. In this scenario, systems adopting one or more renewable energy sources and capable of producing several forms of energy along with some useful substances, such as fresh water and hydrogen, are a particularly interesting solution. A hybrid polygeneration system based on renewable energy sources can overcome operation problems regarding energy systems where only one energy source is used (solar, wind, biomass) and allows one to use an all-in-one integrated systems in order to match the different loads of a utility. From the point of view of scientific literature, medium- and large-scale systems are the most investigated; nevertheless, more and more attention has also started to be given to small-scale layouts and applications. The growing diffusion of distributed generation applications along with the interest in multipurpose energy systems based on renewables and capable of matching different energy demands create the necessity of developing an overview on the topic of small-scale hybrid and polygeneration systems. Therefore, this paper provides a comprehensive review of the technology, operation, performance, and economical aspects of hybrid and polygeneration renewable energy systems in small-scale applications. In particular, the review presents the technologies used for energy generation from renewables and the ones that may be adopted for energy storage. A significant focus is also given to the adoption of renewable energy sources in hybrid and polygeneration systems, designs/modeling approaches and tools, and main methodologies of assessment. The review shows that investigations on the proposed topic have significant potential for expansion from the point of view of system configuration, hybridization, and applications.

Suggested Citation

  • Maksymilian Homa & Anna Pałac & Maciej Żołądek & Rafał Figaj, 2022. "Small-Scale Hybrid and Polygeneration Renewable Energy Systems: Energy Generation and Storage Technologies, Applications, and Analysis Methodology," Energies, MDPI, vol. 15(23), pages 1-52, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9152-:d:991731
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9152/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9152/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sampath Kumar Vankadara & Shamik Chatterjee & Praveen Kumar Balachandran & Lucian Mihet-Popa, 2022. "Marine Predator Algorithm (MPA)-Based MPPT Technique for Solar PV Systems under Partial Shading Conditions," Energies, MDPI, vol. 15(17), pages 1-16, August.
    2. Krzysztof Sornek & Wojciech Goryl & Rafał Figaj & Gabriela Dąbrowska & Joanna Brezdeń, 2022. "Development and Tests of the Water Cooling System Dedicated to Photovoltaic Panels," Energies, MDPI, vol. 15(16), pages 1-16, August.
    3. Muhammad Paend Bakht & Zainal Salam & Mehr Gul & Waqas Anjum & Mohamad Anuar Kamaruddin & Nuzhat Khan & Abba Lawan Bukar, 2022. "The Potential Role of Hybrid Renewable Energy System for Grid Intermittency Problem: A Techno-Economic Optimisation and Comparative Analysis," Sustainability, MDPI, vol. 14(21), pages 1-29, October.
    4. Orioli, Aldo & Di Gangi, Alessandra, 2016. "Five-years-long effects of the Italian policies for photovoltaics on the energy demand coverage of grid-connected PV systems installed in urban contexts," Energy, Elsevier, vol. 113(C), pages 444-460.
    5. Dahyun Kang & Tae Yong Jung, 2020. "Renewable Energy Options for a Rural Village in North Korea," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
    6. Fernanda Moura Quintão Silva & Menaouar Berrehil El Kattel & Igor Amariz Pires & Thales Alexandre Carvalho Maia, 2022. "Development of a Supervisory System Using Open-Source for a Power Micro-Grid Composed of a Photovoltaic (PV) Plant Connected to a Battery Energy Storage System and Loads," Energies, MDPI, vol. 15(22), pages 1-22, November.
    7. Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.
    8. Adnan Aslam & Naseer Ahmed & Safian Ahmed Qureshi & Mohsen Assadi & Naveed Ahmed, 2022. "Advances in Solar PV Systems; A Comprehensive Review of PV Performance, Influencing Factors, and Mitigation Techniques," Energies, MDPI, vol. 15(20), pages 1-52, October.
    9. Yonghoon Im, 2022. "Assessment of the Impact of Renewable Energy Expansion on the Technological Competitiveness of the Cogeneration Model," Energies, MDPI, vol. 15(18), pages 1-27, September.
    10. Tahir, Muhammad Faizan & Haoyong, Chen & Guangze, Han, 2022. "Evaluating individual heating alternatives in integrated energy system by employing energy and exergy analysis," Energy, Elsevier, vol. 249(C).
    11. Alfredo Gimelli & Massimiliano Muccillo, 2021. "Development of a 1 kW Micro-Polygeneration System Fueled by Natural Gas for Single-Family Users," Energies, MDPI, vol. 14(24), pages 1-21, December.
    12. Daniela Dzhonova-Atanasova & Aleksandar Georgiev & Svetoslav Nakov & Stela Panyovska & Tatyana Petrova & Subarna Maiti, 2022. "Compact Thermal Storage with Phase Change Material for Low-Temperature Waste Heat Recovery—Advances and Perspectives," Energies, MDPI, vol. 15(21), pages 1-21, November.
    13. Son, In Woo & Jeong, Yongju & Son, Seongmin & Park, Jung Hwan & Lee, Jeong Ik, 2022. "Techno-economic evaluation of solar-nuclear hybrid system for isolated grid," Applied Energy, Elsevier, vol. 306(PA).
    14. Giwa, Adewale & Yusuf, Ahmed & Dindi, Abdallah & Balogun, Hammed Abiodun, 2020. "Polygeneration in desalination by photovoltaic thermal systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    15. Reza Norouztabar & Seyed Soheil Mousavi Ajarostaghi & Seyed Sina Mousavi & Payam Nejat & Seyed Saeid Rahimian Koloor & Mohamed Eldessouki, 2022. "On the Performance of a Modified Triple Stack Blade Savonius Wind Turbine as a Function of Geometrical Parameters," Sustainability, MDPI, vol. 14(16), pages 1-26, August.
    16. Rong, Aiying & Lahdelma, Risto, 2016. "Role of polygeneration in sustainable energy system development challenges and opportunities from optimization viewpoints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 363-372.
    17. Md. Rashedul Islam & Homeyra Akter & Harun Or Rashid Howlader & Tomonobu Senjyu, 2022. "Optimal Sizing and Techno-Economic Analysis of Grid-Independent Hybrid Energy System for Sustained Rural Electrification in Developing Countries: A Case Study in Bangladesh," Energies, MDPI, vol. 15(17), pages 1-21, September.
    18. Shiva Amini & Salah Bahramara & Hêmin Golpîra & Bruno Francois & João Soares, 2022. "Techno-Economic Analysis of Renewable-Energy-Based Micro-Grids Considering Incentive Policies," Energies, MDPI, vol. 15(21), pages 1-19, November.
    19. Iman El-Mahallawi & Engy Elshazly & Mohamed Ramadan & Reem Nasser & Moaaz Yasser & Seif El-Badry & Mahmoud Elthakaby & Olugbenga Timo Oladinrin & Muhammad Qasim Rana, 2022. "Solar PV Panels-Self-Cleaning Coating Material for Egyptian Climatic Conditions," Sustainability, MDPI, vol. 14(17), pages 1-13, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shibo Li & Hu Zhou & Genzhu Xu, 2023. "Research on Optimal Configuration of Landscape Storage in Public Buildings Based on Improved NSGA-II," Sustainability, MDPI, vol. 15(2), pages 1-29, January.
    2. Przemysław Ogarek & Michał Wojtoń & Daniel Słyś, 2023. "Hydrogen as a Renewable Energy Carrier in a Hybrid Configuration of Distributed Energy Systems: Bibliometric Mapping of Current Knowledge and Strategies," Energies, MDPI, vol. 16(14), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Pereira da Silva, Patrícia & Dantas, Guilherme & Pereira, Guillermo Ivan & Câmara, Lorrane & De Castro, Nivalde J., 2019. "Photovoltaic distributed generation – An international review on diffusion, support policies, and electricity sector regulatory adaptation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 30-39.
    3. Rong, Aiying & Lahdelma, Risto, 2017. "An efficient model and algorithm for the transmission-constrained multi-site combined heat and power system," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1106-1117.
    4. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    5. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Sustainability analysis for the design of distributed energy systems: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 290(C).
    6. Krzysztof Gaska & Agnieszka Generowicz & Anna Gronba-Chyła & Józef Ciuła & Iwona Wiewiórska & Paweł Kwaśnicki & Marcin Mala & Krzysztof Chyła, 2023. "Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change," Energies, MDPI, vol. 16(15), pages 1-19, July.
    7. Vitale, F. & Rispoli, N. & Sorrentino, M. & Rosen, M.A. & Pianese, C., 2021. "On the use of dynamic programming for optimal energy management of grid-connected reversible solid oxide cell-based renewable microgrids," Energy, Elsevier, vol. 225(C).
    8. Rajesh Kanna Govindhan Radhakrishnan & Uthayakumar Marimuthu & Praveen Kumar Balachandran & Abdul Majid Mohd Shukry & Tomonobu Senjyu, 2022. "An Intensified Marine Predator Algorithm (MPA) for Designing a Solar-Powered BLDC Motor Used in EV Systems," Sustainability, MDPI, vol. 14(21), pages 1-27, October.
    9. Gutiérrez-Alvarez, R. & Guerra, K. & Haro, P., 2023. "Market profitability of CSP-biomass hybrid power plants: Towards a firm supply of renewable energy," Applied Energy, Elsevier, vol. 335(C).
    10. M. M. Hasan & Shakhawat Hossain & M. Mofijur & Zobaidul Kabir & Irfan Anjum Badruddin & T. M. Yunus Khan & Esam Jassim, 2023. "Harnessing Solar Power: A Review of Photovoltaic Innovations, Solar Thermal Systems, and the Dawn of Energy Storage Solutions," Energies, MDPI, vol. 16(18), pages 1-30, September.
    11. Giostri, A. & Binotti, M. & Sterpos, C. & Lozza, G., 2020. "Small scale solar tower coupled with micro gas turbine," Renewable Energy, Elsevier, vol. 147(P1), pages 570-583.
    12. Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.
    13. Gan Huang & Jingyuan Xu & Christos N. Markides, 2023. "High-efficiency bio-inspired hybrid multi-generation photovoltaic leaf," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Solomon Feleke & Degarege Anteneh & Balamurali Pydi & Raavi Satish & Adel El-Shahat & Almoataz Y. Abdelaziz, 2023. "Feasibility and Potential Assessment of Solar Resources: A Case Study in North Shewa Zone, Amhara, Ethiopia," Energies, MDPI, vol. 16(6), pages 1-15, March.
    15. Ahmad I. Elshamy & Engy Elshazly & Olugbenga Timo Oladinrin & Muhammad Qasim Rana & Rasha Said Abd el-Lateef & Seif Tarek El-Badry & Mahmoud Elthakaby & Ahmed M. R. Elbaz & Khaled Dewidar & Iman El-Ma, 2022. "Challenges and Opportunities for Integrating RE Systems in Egyptian Building Stocks," Energies, MDPI, vol. 15(23), pages 1-23, November.
    16. Sachdeva, Jatin & Singh, Onkar, 2019. "Thermodynamic analysis of solar powered triple combined Brayton, Rankine and organic Rankine cycle for carbon free power," Renewable Energy, Elsevier, vol. 139(C), pages 765-780.
    17. Md. Arif Hossain & Ashik Ahmed & Shafiqur Rahman Tito & Razzaqul Ahshan & Taiyeb Hasan Sakib & Sarvar Hussain Nengroo, 2022. "Multi-Objective Hybrid Optimization for Optimal Sizing of a Hybrid Renewable Power System for Home Applications," Energies, MDPI, vol. 16(1), pages 1-19, December.
    18. Imene Khenissi & Tawfik Guesmi & Ismail Marouani & Badr M. Alshammari & Khalid Alqunun & Saleh Albadran & Salem Rahmani & Rafik Neji, 2023. "Energy Management Strategy for Optimal Sizing and Siting of PVDG-BES Systems under Fixed and Intermittent Load Consumption Profile," Sustainability, MDPI, vol. 15(2), pages 1-28, January.
    19. Pina, Eduardo A. & Lozano, Miguel A. & Serra, Luis M., 2018. "Thermoeconomic cost allocation in simple trigeneration systems including thermal energy storage," Energy, Elsevier, vol. 153(C), pages 170-184.
    20. Kevin Ellingwood & Seyed Mostafa Safdarnejad & Khalid Rashid & Kody Powell, 2018. "Leveraging Energy Storage in a Solar-Tower and Combined Cycle Hybrid Power Plant," Energies, MDPI, vol. 12(1), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9152-:d:991731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.