IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0301363.html
   My bibliography  Save this article

A novel algorithm for maximum power point tracking using computer vision (CVMPPT)

Author

Listed:
  • Morteza Ahmadi
  • Masoud Abrari
  • Majid Ghanaatshoar
  • Ali Khalafi

Abstract

The behavior of an illuminated solar module can be characterized by its power-voltage curve. Tracking the peak of this curve is essential to harvest the maximum power by the module. The position of the peak varies with temperature and irradiance and needs to be traced. Under partial shading conditions, the number of peaks increases and makes it more difficult to find the global maximum power point (MPP). Various methods are used for maximum power point tracking (MPPT) that are based on iterations. These methods are time-consuming and fail to work satisfactorily under rapidly changing environmental conditions. In this paper, a novel algorithm is proposed that for the first time, utilizes computer vision to find the global maximum power point. This algorithm, which is implemented in Matlab/Simulink, is free of voltage iterations and gives the real-time data for the maximum power point. The proposed algorithm increases the speed and the reliability of the MPP tracking via replacing analogue electronics calculations by digital means. The validity of the algorithm is experimentally verified.

Suggested Citation

  • Morteza Ahmadi & Masoud Abrari & Majid Ghanaatshoar & Ali Khalafi, 2024. "A novel algorithm for maximum power point tracking using computer vision (CVMPPT)," PLOS ONE, Public Library of Science, vol. 19(4), pages 1-16, April.
  • Handle: RePEc:plo:pone00:0301363
    DOI: 10.1371/journal.pone.0301363
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0301363
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0301363&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0301363?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sampath Kumar Vankadara & Shamik Chatterjee & Praveen Kumar Balachandran & Lucian Mihet-Popa, 2022. "Marine Predator Algorithm (MPA)-Based MPPT Technique for Solar PV Systems under Partial Shading Conditions," Energies, MDPI, vol. 15(17), pages 1-16, August.
    2. Jordehi, A. Rezaee, 2016. "Maximum power point tracking in photovoltaic (PV) systems: A review of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1127-1138.
    3. Kuei-Hsiang Chao & Muhammad Nursyam Rizal, 2021. "A Hybrid MPPT Controller Based on the Genetic Algorithm and Ant Colony Optimization for Photovoltaic Systems under Partially Shaded Conditions," Energies, MDPI, vol. 14(10), pages 1-17, May.
    4. Calcabrini, Andres & Muttillo, Mirco & Weegink, Raoul & Manganiello, Patrizio & Zeman, Miro & Isabella, Olindo, 2021. "A fully reconfigurable series-parallel photovoltaic module for higher energy yields in urban environments," Renewable Energy, Elsevier, vol. 179(C), pages 1-11.
    5. Srinivasan Alwar & Devakirubakaran Samithas & Meenakshi Sundaram Boominathan & Praveen Kumar Balachandran & Lucian Mihet-Popa, 2022. "Performance Analysis of Thermal Image Processing-Based Photovoltaic Fault Detection and PV Array Reconfiguration—A Detailed Experimentation," Energies, MDPI, vol. 15(22), pages 1-21, November.
    6. Humada, Ali M. & Hojabri, Mojgan & Mekhilef, Saad & Hamada, Hussein M., 2016. "Solar cell parameters extraction based on single and double-diode models: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 494-509.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arsad, A.Z. & Zuhdi, A.W. Mahmood & Azhar, A.D. & Chau, C.F. & Ghazali, A., 2025. "Advancements in maximum power point tracking for solar charge controllers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    2. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    3. Sy Ngo & Chian-Song Chiu & Thanh-Dong Ngo, 2022. "A Novel Horse Racing Algorithm Based MPPT Control for Standalone PV Power Systems," Energies, MDPI, vol. 15(20), pages 1-18, October.
    4. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    5. Tong Kang & Jiangang Yao & Min Jin & Shengjie Yang & ThanhLong Duong, 2018. "A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic (PV) Models," Energies, MDPI, vol. 11(5), pages 1-31, April.
    6. Marcus King & Dacheng Li & Mark Dooner & Saikat Ghosh & Jatindra Nath Roy & Chandan Chakraborty & Jihong Wang, 2021. "Mathematical Modelling of a System for Solar PV Efficiency Improvement Using Compressed Air for Panel Cleaning and Cooling," Energies, MDPI, vol. 14(14), pages 1-18, July.
    7. Blaifi, Sid-ali & Mellit, Adel & Taghezouit, Bilal & Moulahoum, Samir & Hafdaoui, Hichem, 2025. "A simple non-parametric model for photovoltaic output power prediction," Renewable Energy, Elsevier, vol. 240(C).
    8. Gulin, Marko & Pavlović, Tomislav & Vašak, Mario, 2016. "Photovoltaic panel and array static models for power production prediction: Integration of manufacturers’ and on-line data," Renewable Energy, Elsevier, vol. 97(C), pages 399-413.
    9. Ju, Xing & Pan, Xinyu & Zhang, Zheyang & Xu, Chao & Wei, Gaosheng, 2019. "Thermal and electrical performance of the dense-array concentrating photovoltaic (DA-CPV) system under non-uniform illumination," Applied Energy, Elsevier, vol. 250(C), pages 904-915.
    10. Senturk, Ali, 2020. "Investigation of datasheet provided temperature coefficients of photovoltaic modules under various sky profiles at the field by applying a new validation procedure," Renewable Energy, Elsevier, vol. 152(C), pages 644-652.
    11. Pedroza-Díaz, Alfredo & Rodrigo, Pedro M. & Dávalos-Orozco, Óscar & De-la-Vega, Eduardo & Valera-Albacete, Álvaro, 2025. "Review of explicit models for photovoltaic cell electrical characterization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    12. Jing Wang & Yubing Xu, 2022. "How Does Digitalization Affect Haze Pollution? The Mediating Role of Energy Consumption," IJERPH, MDPI, vol. 19(18), pages 1-15, September.
    13. Youssef, Ayman & El-Telbany, Mohammed & Zekry, Abdelhalim, 2017. "The role of artificial intelligence in photo-voltaic systems design and control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 72-79.
    14. Zhou, Junfeng & Zhang, Yanhui & Zhang, Yubo & Shang, Wen-Long & Yang, Zhile & Feng, Wei, 2022. "Parameters identification of photovoltaic models using a differential evolution algorithm based on elite and obsolete dynamic learning," Applied Energy, Elsevier, vol. 314(C).
    15. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    16. Ahmad, Riaz & Murtaza, Ali F. & Sher, Hadeed Ahmed, 2019. "Power tracking techniques for efficient operation of photovoltaic array in solar applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 82-102.
    17. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    18. Jeisson Vélez-Sánchez & Juan David Bastidas-Rodríguez & Carlos Andrés Ramos-Paja & Daniel González Montoya & Luz Adriana Trejos-Grisales, 2019. "A Non-Invasive Procedure for Estimating the Exponential Model Parameters of Bypass Diodes in Photovoltaic Modules," Energies, MDPI, vol. 12(2), pages 1-20, January.
    19. Victor Arturo Martinez Lopez & Ugnė Žindžiūtė & Hesan Ziar & Miro Zeman & Olindo Isabella, 2022. "Study on the Effect of Irradiance Variability on the Efficiency of the Perturb-and-Observe Maximum Power Point Tracking Algorithm," Energies, MDPI, vol. 15(20), pages 1-12, October.
    20. Bin Zhang & Binbin Wang & Hongxi Zhang & Abdelkader Outzourhit & Fouad Belhora & Zoubir El Felsoufi & Jia-Wei Zhang & Jun Gao, 2025. "Research on an Energy-Harvesting System Based on the Energy Field of the Environment Surrounding a Photovoltaic Power Plant," Energies, MDPI, vol. 18(14), pages 1-20, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0301363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.