IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9098-d989772.html
   My bibliography  Save this article

Recent Advances in the Synthesis, Application and Economic Feasibility of Ionic Liquids and Deep Eutectic Solvents for CO 2 Capture: A Review

Author

Listed:
  • Syed Awais Ali

    (Department of Mechanical Engineering, Faculty of Mechanical and Aeronautical Engineering, University of Engineering and Technology Taxila, Rawalpindi 47080, Pakistan)

  • Waqad Ul Mulk

    (Department of Mechanical Engineering, Faculty of Mechanical and Aeronautical Engineering, University of Engineering and Technology Taxila, Rawalpindi 47080, Pakistan)

  • Zahoor Ullah

    (Department of Chemistry, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87100, Pakistan)

  • Haris Khan

    (Department of Mechanical Engineering, Faculty of Mechanical and Aeronautical Engineering, University of Engineering and Technology Taxila, Rawalpindi 47080, Pakistan)

  • Afrah Zahid

    (Department of Chemistry, The Women University, Multan 54500, Pakistan)

  • Mansoor Ul Hassan Shah

    (Department of Chemical Engineering, University of Engineering and Technology, Peshawar 25120, Pakistan)

  • Syed Nasir Shah

    (Department of Energy Engineering, Faculty of Mechanical and Aeronautical Engineering, University of Engineering and Technology Taxila, Rawalpindi 47080, Pakistan)

Abstract

Global warming is one of the major problems in the developing world, and one of the major causes of global warming is the generation of carbon dioxide (CO 2 ) because of the burning of fossil fuels. Burning fossil fuels to meet the energy demand of households and industries is unavoidable. The current commercial and experimental techniques used for capturing and storing CO 2 have serious operational and environmental constraints. The amine-based absorption technique for CO 2 capture has a low absorption and desorption ratio, and the volatile and corrosive nature of the solvent further complicates the situation. To overcome all of these problems, researchers have used ionic liquids (ILs) and deep eutectic solvents (DESs) as a replacement for commercial amine-based solvents. ILs and deep eutectic solvents are tunable solvents that have a very low vapor pressure, thus making them an ideal medium for CO 2 capture. Moreover, most ionic liquids and deep eutectic solvents have low toxicity and can be recycled without a significant loss in their CO 2 capture capability. This paper first gives a brief overview of the ILs and DESs used for CO 2 capture, followed by the functionalization of ILs to enhance CO 2 capture. Moreover, it provides details on the conversion of CO 2 into different valuable products using ILs and DESs, along with an economic perspective on using both of these solvents for CO 2 capture. Furthermore, it provides insight into the difficulties and drawbacks that are faced by industries when using ILs and DESs.

Suggested Citation

  • Syed Awais Ali & Waqad Ul Mulk & Zahoor Ullah & Haris Khan & Afrah Zahid & Mansoor Ul Hassan Shah & Syed Nasir Shah, 2022. "Recent Advances in the Synthesis, Application and Economic Feasibility of Ionic Liquids and Deep Eutectic Solvents for CO 2 Capture: A Review," Energies, MDPI, vol. 15(23), pages 1-31, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9098-:d:989772
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9098/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9098/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dexin Yang & Qinggong Zhu & Chunjun Chen & Huizhen Liu & Zhimin Liu & Zhijuan Zhao & Xiaoyu Zhang & Shoujie Liu & Buxing Han, 2019. "Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Haider, Junaid & Saeed, Saad & Qyyum, Muhammad Abdul & Kazmi, Bilal & Ahmad, Rizwan & Muhammad, Ayyaz & Lee, Moonyong, 2020. "Simultaneous capture of acid gases from natural gas adopting ionic liquids: Challenges, recent developments, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    3. Quadrelli, Roberta & Peterson, Sierra, 2007. "The energy-climate challenge: Recent trends in CO2 emissions from fuel combustion," Energy Policy, Elsevier, vol. 35(11), pages 5938-5952, November.
    4. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    5. Aghaie, Mahsa & Rezaei, Nima & Zendehboudi, Sohrab, 2018. "A systematic review on CO2 capture with ionic liquids: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 502-525.
    6. Mendelsohn, Robert & Dinar, Ariel & Williams, Larry, 2006. "The distributional impact of climate change on rich and poor countries," Environment and Development Economics, Cambridge University Press, vol. 11(2), pages 159-178, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Humbul Suleman & Rizwan Nasir, 2023. "CCUS: The Road to Net-Zero," Energies, MDPI, vol. 16(11), pages 1-3, May.
    2. Ahmed M. Nassef, 2023. "Improving CO 2 Absorption Using Artificial Intelligence and Modern Optimization for a Sustainable Environment," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    3. Mohd Azlan Kassim & Nor Afifah Sulaiman & Rozita Yusoff & Mohamed Kheireddine Aroua, 2023. "Non-Aqueous Solvent Mixtures for CO 2 Capture: Choline Hydroxide-Based Deep Eutectic Solvents Absorbent Performance at Various Temperatures and Pressures," Sustainability, MDPI, vol. 15(12), pages 1-14, June.
    4. Yi Guo & Qi Wang & Maofei Geng & Xueyuan Peng & Jianmei Feng, 2023. "Effects of Liquid Density on the Gas-Liquid Interaction of the Ionic Liquid Compressor for Hydrogen Storage," Energies, MDPI, vol. 16(7), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Chao & Zhu, Rong & Wei, Guangsheng & Dong, Kai & Xia, Tao, 2023. "Typical case of CO2 capture in Chinese iron and steel enterprises: Exergy analysis," Applied Energy, Elsevier, vol. 336(C).
    2. Song, Xueyi & Yuan, Junjie & Yang, Chen & Deng, Gaofeng & Wang, Zhichao & Gao, Jubao, 2023. "Carbon dioxide separation performance evaluation of amine-based versus choline-based deep eutectic solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. Alejandro Lopez-Feldman, 2013. "Climate change, agriculture, and poverty: A household level analysis for rural Mexico," Economics Bulletin, AccessEcon, vol. 33(2), pages 1126-1139.
    4. Matthias Schmidt & Hermann Held & Elmar Kriegler & Alexander Lorenz, 2013. "Climate Policy Under Uncertain and Heterogeneous Climate Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 79-99, January.
    5. David Klenert & Franziska Funke & Linus Mattauch & Brian O’Callaghan, 2020. "Five Lessons from COVID-19 for Advancing Climate Change Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 751-778, August.
    6. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    7. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    8. Bermudez, Bladimir Carrillo & Santos Branco, Danyelle Karine & Trujillo, Juan Carlos & de Lima, Joao Eustaquio, 2015. "Deforestation and Infant Health: Evidence from an Environmental Conservation Policy in Brazil," 2015 Conference, August 9-14, 2015, Milan, Italy 229064, International Association of Agricultural Economists.
    9. Channing Arndt & Felix Asante & James Thurlow, 2015. "Implications of Climate Change for Ghana’s Economy," Sustainability, MDPI, vol. 7(6), pages 1-18, June.
    10. Jawid, Asadullah & Khadjavi, Menusch, 2019. "Adaptation to climate change in Afghanistan: Evidence on the impact of external interventions," Economic Analysis and Policy, Elsevier, vol. 64(C), pages 64-82.
    11. Karine Constant & Marion Davin, 2019. "Unequal Vulnerability to Climate Change and the Transmission of Adverse Effects Through International Trade," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 727-759, October.
    12. Aprea, Ciro & Maiorino, Angelo, 2011. "An experimental investigation of the global environmental impact of the R22 retrofit with R422D," Energy, Elsevier, vol. 36(2), pages 1161-1170.
    13. Don Fullerton, 2011. "Six Distributional Effects of Environmental Policy," Risk Analysis, John Wiley & Sons, vol. 31(6), pages 923-929, June.
    14. Millner, Antony & Dietz, Simon, 2015. "Adaptation to climate change and economic growth in developing countries," Environment and Development Economics, Cambridge University Press, vol. 20(3), pages 380-406, June.
    15. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    16. Majeda Khraisheh & Khadija M. Zadeh & Abedalkhader I. Alkhouzaam & Dorra Turki & Mohammad K. Hassan & Fares Al Momani & Syed M. J. Zaidi, 2020. "Characterization of polysulfone/diisopropylamine 1‐alkyl‐3‐methylimidazolium ionic liquid membranes: high pressure gas separation applications," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 795-808, August.
    17. Cláudio J. R. Frazão & Nils Wagner & Kenny Rabe & Thomas Walther, 2023. "Construction of a synthetic metabolic pathway for biosynthesis of 2,4-dihydroxybutyric acid from ethylene glycol," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    19. Avri Eitan, 2021. "Promoting Renewable Energy to Cope with Climate Change—Policy Discourse in Israel," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    20. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9098-:d:989772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.