IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8811-d980809.html
   My bibliography  Save this article

The Analysis of Selected Factors Improving the Cargo Susceptibility to Modal Shift

Author

Listed:
  • Mateusz Zając

    (Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland)

Abstract

The issue of shifting loads from road to rail is always vivid when it comes to reducing CO 2 emissions from transport. Practically not every load transported by road vehicles over a long distance can be transferred to rail. Additionally, the potential of the railway lines is limited, which means that the network is not able to accept huge amounts of loads from road transport. In the article, attention was paid to the typology of cargo susceptible to changing the means of transport. The article discusses the factors influencing the real possibility of CO 2 reduction by changing the mode of transport. The analysis and calculation example of the selected region in Poland is presented.

Suggested Citation

  • Mateusz Zając, 2022. "The Analysis of Selected Factors Improving the Cargo Susceptibility to Modal Shift," Energies, MDPI, vol. 15(23), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8811-:d:980809
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8811/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8811/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ana-Maria Cormos & Simion Dragan & Letitia Petrescu & Vlad Sandu & Calin-Cristian Cormos, 2020. "Techno-Economic and Environmental Evaluations of Decarbonized Fossil-Intensive Industrial Processes by Reactive Absorption & Adsorption CO 2 Capture Systems," Energies, MDPI, vol. 13(5), pages 1-16, March.
    2. Shenle Pan & Eric Ballot & Frédéric Fontane, 2013. "The reduction of greenhouse gas emissions from freight transport by pooling supply chains," Post-Print hal-00733678, HAL.
    3. Alejandro Toriello & Nelson A. Uhan, 2013. "Technical Note---On Traveling Salesman Games with Asymmetric Costs," Operations Research, INFORMS, vol. 61(6), pages 1429-1434, December.
    4. Yuliya Mamatok & Yingyi Huang & Chun Jin & Xingqun Cheng, 2019. "A System Dynamics Model for CO 2 Mitigation Strategies at a Container Seaport," Sustainability, MDPI, vol. 11(10), pages 1-19, May.
    5. Zajac, Pawel & Rozic, Tomislav, 2022. "Energy consumption of forklift versus standards, effects of their use and expectations," Energy, Elsevier, vol. 239(PD).
    6. Franciszek Restel & Łukasz Wolniewicz & Matea Mikulčić, 2021. "Method for Designing Robust and Energy Efficient Railway Schedules," Energies, MDPI, vol. 14(24), pages 1-12, December.
    7. Pan, Shenle & Ballot, Eric & Fontane, Frédéric, 2013. "The reduction of greenhouse gas emissions from freight transport by pooling supply chains," International Journal of Production Economics, Elsevier, vol. 143(1), pages 86-94.
    8. Vis, Iris F. A. & de Koster, Rene, 2003. "Transshipment of containers at a container terminal: An overview," European Journal of Operational Research, Elsevier, vol. 147(1), pages 1-16, May.
    9. Berger, Susanne & Bierwirth, Christian, 2010. "Solutions to the request reassignment problem in collaborative carrier networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(5), pages 627-638, September.
    10. Artur Kierzkowski & Szymon Haładyn, 2022. "Method for Reconfiguring Train Schedules Taking into Account the Global Reduction of Railway Energy Consumption," Energies, MDPI, vol. 15(5), pages 1-18, March.
    11. Salvucci, Raffaele & Gargiulo, Maurizio & Karlsson, Kenneth, 2019. "The role of modal shift in decarbonising the Scandinavian transport sector: Applying substitution elasticities in TIMES-Nordic," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nassim Mrabti & Nadia Hamani & Laurent Delahoche, 2022. "A Comprehensive Literature Review on Sustainable Horizontal Collaboration," Sustainability, MDPI, vol. 14(18), pages 1-38, September.
    2. Qian Dai & Jiaqi Yang & Dong Li, 2018. "Modeling a Three-Mode Hybrid Port-Hinterland Freight Intermodal Distribution Network with Environmental Consideration: The Case of the Yangtze River Economic Belt in China," Sustainability, MDPI, vol. 10(9), pages 1-26, August.
    3. Yi Zheng & Huchang Liao & Xue Yang, 2016. "Stochastic Pricing and Order Model with Transportation Mode Selection for Low-Carbon Retailers," Sustainability, MDPI, vol. 8(1), pages 1-19, January.
    4. Meng, Xiaoge & Yao, Zhong & Nie, Jiajia & Zhao, Yingxue & Li, Zenglu, 2018. "Low-carbon product selection with carbon tax and competition: Effects of the power structure," International Journal of Production Economics, Elsevier, vol. 200(C), pages 224-230.
    5. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    6. Nchofoung, Tii N. & Asongu, Simplice A., 2022. "Effects of infrastructures on environmental quality contingent on trade openness and governance dynamics in Africa," Renewable Energy, Elsevier, vol. 189(C), pages 152-163.
    7. Fahimnia, Behnam & Sarkis, Joseph & Eshragh, Ali, 2015. "A tradeoff model for green supply chain planning:A leanness-versus-greenness analysis," Omega, Elsevier, vol. 54(C), pages 173-190.
    8. Thomas Hacardiaux & Christof Defryn & Jean-Sébastien Tancrez & Lotte Verdonck, 2022. "Balancing partner preferences for logistics costs and carbon footprint in a horizontal cooperation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 121-153, March.
    9. Emilie Gaubert & David Guerrero, 2014. "Modèles d'organisation logistique : une typologie d'activités," Post-Print hal-01069438, HAL.
    10. Artur Kierzkowski & Agnieszka A. Tubis, 2023. "Transportation Systems Modeling, Simulation and Analysis with Reference to Energy Supplying," Energies, MDPI, vol. 16(8), pages 1-6, April.
    11. Manel Elmsalmi & Wafik Hachicha & Awad M. Aljuaid, 2021. "Prioritization of the Best Sustainable Supply Chain Risk Management Practices Using a Structural Analysis Based-Approach," Sustainability, MDPI, vol. 13(9), pages 1-15, April.
    12. Alix Vargas & Carmen Fuster & David Corne, 2020. "Towards Sustainable Collaborative Logistics Using Specialist Planning Algorithms and a Gain-Sharing Business Model: A UK Case Study," Sustainability, MDPI, vol. 12(16), pages 1-29, August.
    13. Wu, Yisheng & Lu, Ronghua & Yang, Jing & Xu, Feng, 2021. "Low-carbon decision-making model of online shopping supply chain considering the O2O model," Journal of Retailing and Consumer Services, Elsevier, vol. 59(C).
    14. Konur, Dinçer, 2014. "Carbon constrained integrated inventory control and truckload transportation with heterogeneous freight trucks," International Journal of Production Economics, Elsevier, vol. 153(C), pages 268-279.
    15. Shenle Pan & Michele Nigrelli & Eric Ballot & Rochdi Sarraj, 2013. "Performance Assessment Of Distributed Inventory In Physical Internet," Post-Print hal-00876280, HAL.
    16. Cheng, Chun & Qi, Mingyao & Wang, Xingyi & Zhang, Ying, 2016. "Multi-period inventory routing problem under carbon emission regulations," International Journal of Production Economics, Elsevier, vol. 182(C), pages 263-275.
    17. Ahmad Alshamrani & Dipanjana Sengupta & Amrit Das & Uttam Kumar Bera & Ibrahim M. Hezam & Moddassir Khan Nayeem & Faisal Aqlan, 2023. "Optimal Design of an Eco-Friendly Transportation Network under Uncertain Parameters," Sustainability, MDPI, vol. 15(6), pages 1-26, March.
    18. Mustapa, Siti Indati & Bekhet, Hussain Ali, 2016. "Analysis of CO2 emissions reduction in the Malaysian transportation sector: An optimisation approach," Energy Policy, Elsevier, vol. 89(C), pages 171-183.
    19. Laila Abdelhai & Nicolas Malhéné & Jesus Gonzalez-Feliu, 2014. "Logistique Urbaine Durable : Le Cdu, Un Point De Convergence Entre Les Différents Acteurs," Post-Print halshs-01098919, HAL.
    20. Manuel Sanchez & Lorena Pradenas & Jean-Christophe Deschamps & Victor Parada, 2016. "Reducing the carbon footprint in a vehicle routing problem by pooling resources from different companies," Netnomics, Springer, vol. 17(1), pages 29-45, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8811-:d:980809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.