IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8632-d976012.html
   My bibliography  Save this article

Novel Functionalities of Smart Home Devices for the Elastic Energy Management Algorithm

Author

Listed:
  • Piotr Powroźnik

    (Institute of Metrology, Electronics and Computer Science, University of Zielona Góra, 65-516 Zielona Góra, Poland)

  • Paweł Szcześniak

    (Institute of Automatic Control, Electronics and Electrical Engineering, University of Zielona Góra, 65-516 Zielona Góra, Poland)

  • Łukasz Sobolewski

    (Institute of Metrology, Electronics and Computer Science, University of Zielona Góra, 65-516 Zielona Góra, Poland)

  • Krzysztof Piotrowski

    (IHP—Leibniz Institute for High Performance Microelectronics, 15236 Frankfurt (Oder), Germany)

Abstract

Energy management in power systems is influenced by such factors as economic and ecological aspects. Increasing the use of electricity produced at a given time from renewable energy sources (RES) by employing the elastic energy management algorithm will allow for an increase in “green energy“ in the energy sector. At the same time, it can reduce the production of electricity from fossil fuels, which is a positive economic aspect. In addition, it will reduce the volume of energy from RES that have to be stored using expensive energy storage or sent to other parts of the grid. The model parameters proposed in the elastic energy management algorithm are discussed. In particular, attention is paid to the time shift, which allows for the acceleration or the delay in the start-up of smart appliances. The actions taken by the algorithm are aimed at maintaining a compromise between the user’s comfort and the requirements of distribution network operators. Establishing the value of the time shift parameter is based on GMDH neural networks and the regression method. In the simulation studies, the extension of selected activities related to the tasks performed in households and its impact on the user’s comfort as well as the response to the increased generation of energy from renewable energy sources have been verified by the simulation research presented in this article. The widespread use of the new functionalities of smart appliance devices together with the elastic energy management algorithm is planned for the future. Such a combination of hardware and software will enable more effective energy management in smart grids, which will be part of national power systems.

Suggested Citation

  • Piotr Powroźnik & Paweł Szcześniak & Łukasz Sobolewski & Krzysztof Piotrowski, 2022. "Novel Functionalities of Smart Home Devices for the Elastic Energy Management Algorithm," Energies, MDPI, vol. 15(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8632-:d:976012
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8632/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8632/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Croonenbroeck, Carsten & Dahl, Christian Møller, 2014. "Accurate medium-term wind power forecasting in a censored classification framework," Energy, Elsevier, vol. 73(C), pages 221-232.
    2. Croonenbroeck, Carsten & Møller Dahl, Christian, 2014. "Accurate medium-term wind power forecasting in a censored classification framework," Discussion Papers 351, European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics.
    3. Hussein Jumma Jabir & Jiashen Teh & Dahaman Ishak & Hamza Abunima, 2018. "Impacts of Demand-Side Management on Electrical Power Systems: A Review," Energies, MDPI, vol. 11(5), pages 1-19, April.
    4. Piotr Powroźnik & Paweł Szcześniak & Krzysztof Turchan & Miłosz Krysik & Igor Koropiecki & Krzysztof Piotrowski, 2022. "An Elastic Energy Management Algorithm in a Hierarchical Control System with Distributed Control Devices," Energies, MDPI, vol. 15(13), pages 1-24, June.
    5. Jannesar, Mohammad Rasol & Sedighi, Alireza & Savaghebi, Mehdi & Guerrero, Josep M., 2018. "Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration," Applied Energy, Elsevier, vol. 226(C), pages 957-966.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, MengXuan & Wu, BingHeng & Chen, Kai & Zhang, Xing & Wang, Jun, 2016. "Simulating the wake flow effect of wind turbines on velocity and turbulence using particle random walk method," Energy, Elsevier, vol. 116(P1), pages 583-591.
    2. Croonenbroeck, Carsten & Stadtmann, Georg, 2015. "Minimizing asymmetric loss in medium-term wind power forecasting," Renewable Energy, Elsevier, vol. 81(C), pages 197-208.
    3. Croonenbroeck, Carsten & Ambach, Daniel, 2014. "Censored spatial wind power prediction with random effects," Discussion Papers 362, European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics.
    4. Croonenbroeck, Carsten & Stadtmann, Georg, 2019. "Renewable generation forecast studies – Review and good practice guidance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 312-322.
    5. Croonenbroeck, Carsten & Ambach, Daniel, 2015. "Censored spatial wind power prediction with random effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 613-622.
    6. Ziel, Florian & Croonenbroeck, Carsten & Ambach, Daniel, 2016. "Forecasting wind power – Modeling periodic and non-linear effects under conditional heteroscedasticity," Applied Energy, Elsevier, vol. 177(C), pages 285-297.
    7. Croonenbroeck, Carsten & Ambach, Daniel, 2014. "A comparison of different wind power forecasting models to the Mycielski approach," Discussion Papers 355, European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics.
    8. Marčiukaitis, Mantas & Žutautaitė, Inga & Martišauskas, Linas & Jokšas, Benas & Gecevičius, Giedrius & Sfetsos, Athanasios, 2017. "Non-linear regression model for wind turbine power curve," Renewable Energy, Elsevier, vol. 113(C), pages 732-741.
    9. Jannik Schütz Roungkvist & Peter Enevoldsen, 2020. "Timescale classification in wind forecasting: A review of the state‐of‐the‐art," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 757-768, August.
    10. Zhongrong Zhang & Yiliao Song & Feng Liu & Jinpeng Liu, 2016. "Daily Average Wind Power Interval Forecasts Based on an Optimal Adaptive-Network-Based Fuzzy Inference System and Singular Spectrum Analysis," Sustainability, MDPI, vol. 8(2), pages 1-30, January.
    11. Croonenbroeck, Carsten & Hüttel, Silke, 2017. "Quantifying the economic efficiency impact of inaccurate renewable energy price forecasts," Energy, Elsevier, vol. 134(C), pages 767-774.
    12. María Pérez-Ortiz & Silvia Jiménez-Fernández & Pedro A. Gutiérrez & Enrique Alexandre & César Hervás-Martínez & Sancho Salcedo-Sanz, 2016. "A Review of Classification Problems and Algorithms in Renewable Energy Applications," Energies, MDPI, vol. 9(8), pages 1-27, August.
    13. Piotr Powroźnik & Paweł Szcześniak & Krzysztof Turchan & Miłosz Krysik & Igor Koropiecki & Krzysztof Piotrowski, 2022. "An Elastic Energy Management Algorithm in a Hierarchical Control System with Distributed Control Devices," Energies, MDPI, vol. 15(13), pages 1-24, June.
    14. Daniel Ambach & Carsten Croonenbroeck, 2016. "Space-time short- to medium-term wind speed forecasting," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 5-20, March.
    15. Daniel Ambach & Carsten Croonenbroeck, 2016. "Space-time short- to medium-term wind speed forecasting," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 5-20, March.
    16. Ovidiu Ivanov & Samiran Chattopadhyay & Soumya Banerjee & Bogdan-Constantin Neagu & Gheorghe Grigoras & Mihai Gavrilas, 2020. "A Novel Algorithm with Multiple Consumer Demand Response Priorities in Residential Unbalanced LV Electricity Distribution Networks," Mathematics, MDPI, vol. 8(8), pages 1-24, July.
    17. Antans Sauhats & Andrejs Utans & Jurijs Silinevics & Gatis Junghans & Dmitrijs Guzs, 2021. "Enhancing Power System Frequency with a Novel Load Shedding Method Including Monitoring of Synchronous Condensers’ Power Injections," Energies, MDPI, vol. 14(5), pages 1-21, March.
    18. Bernadeta Gołębiowska & Anna Bartczak & Mikołaj Czajkowski, 2020. "Energy Demand Management and Social Norms," Energies, MDPI, vol. 13(15), pages 1-20, July.
    19. Arjuna Nebel & Christine Krüger & Tomke Janßen & Mathieu Saurat & Sebastian Kiefer & Karin Arnold, 2020. "Comparison of the Effects of Industrial Demand Side Management and Other Flexibilities on the Performance of the Energy System," Energies, MDPI, vol. 13(17), pages 1-20, August.
    20. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8632-:d:976012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.