IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8617-d975630.html
   My bibliography  Save this article

Energy, Exergy, Environmental and Economic Analysis (4e) of a Solar Thermal System for Process Heating in Jamshoro, Pakistan

Author

Listed:
  • Junaid Ahmed

    (Directorate of Postgraduate Studies, Mehran University of Engineering and Technology, Jamshoro 76062, Pakistan)

  • Laveet Kumar

    (Department of Mechanical Engineering, Mehran University of Engineering and Technology, Jamshoro 76062, Pakistan)

  • Abdul Fatah Abbasi

    (Department of Mechanical Engineering, Mehran University of Engineering and Technology, Jamshoro 76062, Pakistan)

  • Mamdouh El Haj Assad

    (Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates)

Abstract

With an expected annual increase of 1.2%, the industrial sector already consumes over 54% of all the energy generated globally. The majority of industrial sectors presently relies on fossil fuels to fulfil their needs for heat energy, but renewable sources, especially solar energy, can be substituted for them. For an underdeveloped country such as Pakistan, its industrial sector is important for the country’s economic development and long-term growth. The use of solar thermal energy potentially offers a significant and cheap alternative to fossil fuels. The current study focuses on a process heating system based on flat-plate solar collectors, developed to provide low to moderate temperature process heat. The innovative model’s thermal efficiency and economic feasibility have undergone a thorough investigation and analysis through TRNSYS simulations. The system portrayed a 79% thermal energy efficiency and 4.31% exergy efficiency during peak hours. The optimized system for three different temperatures of 60 °C, 70 °C, and 80 °C was designed and evaluated. The system presented a total of 82 tons of CO 2 prevention annually. The economic analysis consisting of three parameters, NPV, IRR and PBP, also deemed the FPC-based solar thermal system economically profitable.

Suggested Citation

  • Junaid Ahmed & Laveet Kumar & Abdul Fatah Abbasi & Mamdouh El Haj Assad, 2022. "Energy, Exergy, Environmental and Economic Analysis (4e) of a Solar Thermal System for Process Heating in Jamshoro, Pakistan," Energies, MDPI, vol. 15(22), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8617-:d:975630
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8617/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8617/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Holler, Stefan & Winkelmann, Adrian & Pelda, Johannes & Salaymeh, Abdulraheem, 2021. "Feasibility study on solar thermal process heat in the beverage industry," Energy, Elsevier, vol. 233(C).
    2. Hosenuzzaman, M. & Rahim, N.A. & Selvaraj, J. & Hasanuzzaman, M. & Malek, A.B.M.A. & Nahar, A., 2015. "Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 284-297.
    3. Kalogirou, Soteris, 2003. "The potential of solar industrial process heat applications," Applied Energy, Elsevier, vol. 76(4), pages 337-361, December.
    4. Ktistis, Panayiotis K. & Agathokleous, Rafaela A. & Kalogirou, Soteris A., 2021. "Experimental performance of a parabolic trough collector system for an industrial process heat application," Energy, Elsevier, vol. 215(PA).
    5. Karki, Saroj & Haapala, Karl R. & Fronk, Brian M., 2019. "Technical and economic feasibility of solar flat-plate collector thermal energy systems for small and medium manufacturers," Applied Energy, Elsevier, vol. 254(C).
    6. Muneer, T. & Maubleu, S. & Asif, M., 2006. "Prospects of solar water heating for textile industry in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(1), pages 1-23, February.
    7. Abdelhady, Suzan, 2021. "Performance and cost evaluation of solar dish power plant: sensitivity analysis of levelized cost of electricity (LCOE) and net present value (NPV)," Renewable Energy, Elsevier, vol. 168(C), pages 332-342.
    8. Huang, Wei Ming & Lee, Grace W.M. & Wu, Chih Cheng, 2008. "GHG emissions, GDP growth and the Kyoto Protocol: A revisit of Environmental Kuznets Curve hypothesis," Energy Policy, Elsevier, vol. 36(1), pages 239-247, January.
    9. El Ghazzani, Badreddine & Martinez Plaza, Diego & Ait El Cadi, Radia & Ihlal, Ahmed & Abnay, Brahim & Bouabid, Khalid, 2017. "Thermal plant based on parabolic trough collectors for industrial process heat generation in Morocco," Renewable Energy, Elsevier, vol. 113(C), pages 1261-1275.
    10. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    11. Jebasingh, V.K. & Herbert, G.M. Joselin, 2016. "A review of solar parabolic trough collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1085-1091.
    12. Jeffrey Kuo, Chung-Feng & Su, Te-Li & Jhang, Po-Ruei & Huang, Chao-Yang & Chiu, Chin-Hsun, 2011. "Using the Taguchi method and grey relational analysis to optimize the flat-plate collector process with multiple quality characteristics in solar energy collector manufacturing," Energy, Elsevier, vol. 36(5), pages 3554-3562.
    13. Kumar, Laveet & Hasanuzzaman, M. & Rahim, N.A. & Islam, M.M., 2021. "Modeling, simulation and outdoor experimental performance analysis of a solar-assisted process heating system for industrial process heat," Renewable Energy, Elsevier, vol. 164(C), pages 656-673.
    14. jia, Teng & Huang, Junpeng & Li, Rui & He, Peng & Dai, Yanjun, 2018. "Status and prospect of solar heat for industrial processes in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 475-489.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amina Tahri & Mohsine Bouya & Mokhtar Ghazouani & Ouafae Achak & Tarik Chafik & Khalid El Azdi & Sanae Boughanbour, 2022. "Impact of Solar Energy Integration on the Rheological and Chemical Properties of Bitumen," Energies, MDPI, vol. 16(1), pages 1-28, December.
    2. Sun, Bohan & Gao, Ke & Liu, Shuai & Wei, Qiaoqiao & Wang, Hui, 2023. "Assessing the performance and economic viability of solar home systems: A way forward towards clean energy exploration and consumption," Renewable Energy, Elsevier, vol. 208(C), pages 409-419.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gil, Juan D. & Topa, A. & Álvarez, J.D. & Torres, J.L. & Pérez, M., 2022. "A review from design to control of solar systems for supplying heat in industrial process applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    2. Kumar, Laveet & Hasanuzzaman, M. & Rahim, N.A. & Islam, M.M., 2021. "Modeling, simulation and outdoor experimental performance analysis of a solar-assisted process heating system for industrial process heat," Renewable Energy, Elsevier, vol. 164(C), pages 656-673.
    3. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    4. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2012. "Greener energy: Issues and challenges for Pakistan—Solar energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2762-2780.
    6. Laveet Kumar & Junaid Ahmed & Mamdouh El Haj Assad & M. Hasanuzzaman, 2022. "Prospects and Challenges of Solar Thermal for Process Heating: A Comprehensive Review," Energies, MDPI, vol. 15(22), pages 1-27, November.
    7. Lozano-Medina, Alexis & Manzano, Luis & Marcos, José D. & Blanco-Marigorta, Ana M., 2019. "Design of a concentrating solar thermal collector installation for a hotel complex in Gran Canaria," Energy, Elsevier, vol. 183(C), pages 803-811.
    8. Nahin Tasmin & Shahjadi Hisan Farjana & Md Rashed Hossain & Santu Golder & M. A. Parvez Mahmud, 2022. "Integration of Solar Process Heat in Industries: A Review," Clean Technol., MDPI, vol. 4(1), pages 1-35, February.
    9. Gao, Datong & Gao, Guangtao & Cao, Jingyu & Zhong, Shuai & Ren, Xiao & Dabwan, Yousef N. & Hu, Maobin & Jiao, Dongsheng & Kwan, Trevor Hocksun & Pei, Gang, 2020. "Experimental and numerical analysis of an efficiently optimized evacuated flat plate solar collector under medium temperature," Applied Energy, Elsevier, vol. 269(C).
    10. Farjana, Shahjadi Hisan & Huda, Nazmul & Mahmud, M.A. Parvez & Saidur, R., 2018. "Solar industrial process heating systems in operation – Current SHIP plants and future prospects in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 409-419.
    11. Josué F. Rosales-Pérez & Andrés Villarruel-Jaramillo & José A. Romero-Ramos & Manuel Pérez-García & José M. Cardemil & Rodrigo Escobar, 2023. "Hybrid System of Photovoltaic and Solar Thermal Technologies for Industrial Process Heat," Energies, MDPI, vol. 16(5), pages 1-45, February.
    12. Sunil, & Sinha, Rahul & Chaitanya, Bathina & Rajan, Birendra Kumar & Agarwal, Anurag & Thakur, Ajay D. & Raj, Rishi, 2019. "Design, fabrication, and performance evaluation of a novel biomass-gasification-based hot water generation system," Energy, Elsevier, vol. 185(C), pages 148-157.
    13. Lugo, S. & García-Valladares, O. & Best, R. & Hernández, J. & Hernández, F., 2019. "Numerical simulation and experimental validation of an evacuated solar collector heating system with gas boiler backup for industrial process heating in warm climates," Renewable Energy, Elsevier, vol. 139(C), pages 1120-1132.
    14. Alessandro Franco, 2020. "Methods for the Sustainable Design of Solar Energy Systems for Industrial Process Heat," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    15. Piotr Olczak & Dominika Matuszewska & Jadwiga Zabagło, 2020. "The Comparison of Solar Energy Gaining Effectiveness between Flat Plate Collectors and Evacuated Tube Collectors with Heat Pipe: Case Study," Energies, MDPI, vol. 13(7), pages 1-14, April.
    16. Sharma, Ashish K. & Sharma, Chandan & Mullick, Subhash C. & Kandpal, Tara C., 2017. "Solar industrial process heating: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 124-137.
    17. Rehan, Mirza Abdullah & Ali, Muzaffar & Sheikh, Nadeem Ahmed & Khalil, M. Shahid & Chaudhary, Ghulam Qadar & Rashid, Tanzeel ur & Shehryar, M., 2018. "Experimental performance analysis of low concentration ratio solar parabolic trough collectors with nanofluids in winter conditions," Renewable Energy, Elsevier, vol. 118(C), pages 742-751.
    18. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    19. Abbas, Sajid & Yuan, Yanping & Zhou, Jinzhi & Hassan, Atazaz & Yu, Min & Yasheng, Ji, 2022. "Experimental and analytical analysis of the impact of different base plate materials and design parameters on the performance of the photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 187(C), pages 522-536.
    20. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8617-:d:975630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.