IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas0306261923014265.html
   My bibliography  Save this article

Optimization assessment and performance analysis of an ingenious hybrid parabolic trough collector: A machine learning approach

Author

Listed:
  • Salari, Ali
  • Shakibi, Hamid
  • Soltani, Shohreh
  • Kazemian, Arash
  • Ma, Tao

Abstract

Parabolic Trough Collector (PTC) is a solar unit that can convert solar radiation into thermal energy at moderate efficiency. Researchers attempted to increase the output of the PTC units by implementing multiple methods including using helical inserts, transparent aerogel, and reflective mirrors. Nevertheless, the output of this system still is not high enough. The proficiency of the PTC unit can improve by integrating it with Thermoelectric Generator (TEG) and Proton Exchange Membrane (PEM) electrolysis cell, which is studied in the current paper for the first time. In the present study, the efficiency in both PTC-TEG and PTC layouts are poked to demonstrate the consequence of the TEG on the denoted unit efficiency. Besides, the sensitivity study is carried out to assess the influence of operating parameters. Also, extensive data collection is generated and employed to train the designed machine learning models to anticipate the performance of the units in countless operating conditions. Based on the results, the highest accuracy in predicting the performance of the units belongs to the adaptive network-based fuzzy inference system. Also, the results show that the highest entropy generation rate for the PTC and PTC-TEG-PEM units is approximately 11.0 W/m.K and 16.9 W/m.K, respectively. In addition, the highest hydrogen production rate of the PTC-TEG-PEM unit is around 21 mol/h; in fact, the electrical input of the PEM electrolyzer is maintained by the TEG module, which its electrical efficiency calculated to be 3%.

Suggested Citation

  • Salari, Ali & Shakibi, Hamid & Soltani, Shohreh & Kazemian, Arash & Ma, Tao, 2024. "Optimization assessment and performance analysis of an ingenious hybrid parabolic trough collector: A machine learning approach," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014265
    DOI: 10.1016/j.apenergy.2023.122062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923014265
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.