IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v212y2023icp717-737.html
   My bibliography  Save this article

A machine learning approach to optimize the performance of a combined solar chimney-photovoltaic thermal power plant

Author

Listed:
  • Salari, Ali
  • Shakibi, Hamid
  • Alimohammadi, Mahdieh
  • Naghdbishi, Ali
  • Goodarzi, Shadi

Abstract

Solar Chimney Power Plant (SCPP) is a renewable energy system that indirectly converts solar energy to electricity. However, the efficiency of SCPP is not sufficient for practical applications. Integrating SCPPs with Photovoltaic-Thermal systems (PVT) could enhance their performance to levels acceptable for industrial adoption. This study investigates the combined SCPP-PVT performance for the weather conditions of Austin (Texas), San Diego (California), and Phoenix (Arizona), all on a similar latitude. Various configurations of this combined system are numerically simulated, and their efficiencies are compared with a conventional SCPP, SCPP-Photovoltaic (PV), and stand-alone PV modules. Moreover, to predict and optimize the performance of these systems, the Support Vector Regression with Linear (LSVR), Polynomial (PSVR), Gaussian (GSVR), and Hybrid (HSVR) kernels are implemented. In order to optimize the hyperparameters of the Machine Learning (ML) models, the Grey Wolf Optimizer (GWO) is implemented. Also, the optimum performance of the SCPP-PVT system is obtained using the Multi-objective Grasshopper Optimization Algorithm (MOGOA). The results show that the HSVR ML model has the highest accuracy, followed by PSVR, GSVR, and LSVR models. It is shown that the SCPP-PVT system outperforms both SCPP-PV and stand-alone PV modules, respectively. Finally, the SCPP-PVT is shown to outperform the PV modulus by up to 4.8%.

Suggested Citation

  • Salari, Ali & Shakibi, Hamid & Alimohammadi, Mahdieh & Naghdbishi, Ali & Goodarzi, Shadi, 2023. "A machine learning approach to optimize the performance of a combined solar chimney-photovoltaic thermal power plant," Renewable Energy, Elsevier, vol. 212(C), pages 717-737.
  • Handle: RePEc:eee:renene:v:212:y:2023:i:c:p:717-737
    DOI: 10.1016/j.renene.2023.05.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123006705
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.05.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Chao & Ji, Jie & Sun, Wei & Ma, Jinwei & He, Wei & Wang, Yanqiu, 2015. "Numerical simulation and experimental validation of tri-functional photovoltaic/thermal solar collector," Energy, Elsevier, vol. 87(C), pages 470-480.
    2. Ghalamchi, Mehrdad & Kasaeian, Alibakhsh & Ghalamchi, Mehran & Mirzahosseini, Alireza Hajiseyed, 2016. "An experimental study on the thermal performance of a solar chimney with different dimensional parameters," Renewable Energy, Elsevier, vol. 91(C), pages 477-483.
    3. Wu, Yongjia & Ming, Tingzhen & de Richter, Renaud & Höffer, Rüdiger & Niemann, Hans-Jürgen, 2020. "Large-scale freshwater generation from the humid air using the modified solar chimney," Renewable Energy, Elsevier, vol. 146(C), pages 1325-1336.
    4. RahimiLarki, Mohsen & Abardeh, Reza Hosseini & Rahimzadeh, Hassan & Sarlak, Hamid, 2021. "Performance analysis of a laboratory-scale tilted solar chimney system exposed to ambient crosswind," Renewable Energy, Elsevier, vol. 164(C), pages 1156-1170.
    5. Salari, Ali & Parcheforosh, Ali & Hakkaki-Fard, Ali & Amadeh, Ali, 2020. "A numerical study on a photovoltaic thermal system integrated with a thermoelectric generator module," Renewable Energy, Elsevier, vol. 153(C), pages 1261-1271.
    6. Xiong, Hanbing & Ming, Tingzhen & Wu, Yongjia & Wang, Caixia & Chen, Qiong & Li, Wei & Mu, Liwen & de Richter, Renaud & Yuan, Yanping, 2022. "Numerical analysis of solar chimney power plant integrated with CH4 photocatalytic reactors for fighting global warming under ambient crosswind," Renewable Energy, Elsevier, vol. 201(P1), pages 678-690.
    7. Chen, Jie & Huang, Shoujun & Shahabi, Laleh, 2021. "Economic and environmental operation of power systems including combined cooling, heating, power and energy storage resources using developed multi-objective grey wolf algorithm," Applied Energy, Elsevier, vol. 298(C).
    8. Tawalbeh, Muhammad & Mohammed, Shima & Alnaqbi, Aaesha & Alshehhi, Shouq & Al-Othman, Amani, 2023. "Analysis for hybrid photovoltaic/solar chimney seawater desalination plant: A CFD simulation in Sharjah, United Arab Emirates," Renewable Energy, Elsevier, vol. 202(C), pages 667-685.
    9. Sedighi, Ali Asghar & Deldoost, Zeynab & Karambasti, Bahram Mahjoob, 2020. "Effect of thermal energy storage layer porosity on performance of solar chimney power plant considering turbine pressure drop," Energy, Elsevier, vol. 194(C).
    10. Praveen, Vivek & Das, Pritam & Chandramohan, V.P., 2021. "A novel concept of introducing a fillet at the chimney base of solar updraft tower plant and thereby improving the performance: A numerical study," Renewable Energy, Elsevier, vol. 179(C), pages 37-46.
    11. Nasraoui, Haythem & Driss, Zied & Kchaou, Hedi, 2020. "Novel collector design for enhancing the performance of solar chimney power plant," Renewable Energy, Elsevier, vol. 145(C), pages 1658-1671.
    12. Hazami, Majdi & Riahi, Ali & Mehdaoui, Farah & Nouicer, Omeima & Farhat, Abdelhamid, 2016. "Energetic and exergetic performances analysis of a PV/T (photovoltaic thermal) solar system tested and simulated under to Tunisian (North Africa) climatic conditions," Energy, Elsevier, vol. 107(C), pages 78-94.
    13. Sardarabadi, Mohammad & Passandideh-Fard, Mohammad & Zeinali Heris, Saeed, 2014. "Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units)," Energy, Elsevier, vol. 66(C), pages 264-272.
    14. Li, Qiong & Meng, Qinglin & Cai, Jiejin & Yoshino, Hiroshi & Mochida, Akashi, 2009. "Applying support vector machine to predict hourly cooling load in the building," Applied Energy, Elsevier, vol. 86(10), pages 2249-2256, October.
    15. Muhammed, Hardi A. & Atrooshi, Soorkeu A., 2019. "Modeling solar chimney for geometry optimization," Renewable Energy, Elsevier, vol. 138(C), pages 212-223.
    16. Ahmad, Muhammad Waseem & Mourshed, Monjur & Rezgui, Yacine, 2018. "Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression," Energy, Elsevier, vol. 164(C), pages 465-474.
    17. Huang, Ming-Hua & Chen, Lei & Lei, Le & He, Peng & Cao, Jun-Ji & He, Ya-Ling & Feng, Zhen-Ping & Tao, Wen-Quan, 2020. "Experimental and numerical studies for applying hybrid solar chimney and photovoltaic system to the solar-assisted air cleaning system," Applied Energy, Elsevier, vol. 269(C).
    18. Zuo, Lu & Qu, Ning & Liu, Zihan & Ding, Ling & Dai, Pengzhan & Xu, Bofeng & Yuan, Yue, 2020. "Performance study and economic analysis of wind supercharged solar chimney power plant," Renewable Energy, Elsevier, vol. 156(C), pages 837-850.
    19. Michael, Jee Joe & Selvarasan, Iniyan & Goic, Ranko, 2016. "Fabrication, experimental study and testing of a novel photovoltaic module for photovoltaic thermal applications," Renewable Energy, Elsevier, vol. 90(C), pages 95-104.
    20. Kebabsa, Hakim & Lounici, Mohand Said & Lebbi, Mohamed & Daimallah, Ahmed, 2020. "Thermo-hydrodynamic behavior of an innovative solar chimney," Renewable Energy, Elsevier, vol. 145(C), pages 2074-2090.
    21. Hao, Yan & Tian, Chengshi, 2019. "A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting," Applied Energy, Elsevier, vol. 238(C), pages 368-383.
    22. Yazdanifard, Farideh & Ebrahimnia-Bajestan, Ehsan & Ameri, Mehran, 2016. "Investigating the performance of a water-based photovoltaic/thermal (PV/T) collector in laminar and turbulent flow regime," Renewable Energy, Elsevier, vol. 99(C), pages 295-306.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fallah, Seyyed Hossein & Valipour, Mohammad Sadegh, 2022. "Numerical investigation of a small scale sloped solar chimney power plant," Renewable Energy, Elsevier, vol. 183(C), pages 1-11.
    2. Singh, Ajeet Pratap & Kumar, Amit & Akshayveer, & Singh, O.P., 2021. "A novel concept of integrating bell-mouth inlet in converging-diverging solar chimney power plant," Renewable Energy, Elsevier, vol. 169(C), pages 318-334.
    3. Salari, Ali & Hakkaki-Fard, Ali, 2019. "A numerical study of dust deposition effects on photovoltaic modules and photovoltaic-thermal systems," Renewable Energy, Elsevier, vol. 135(C), pages 437-449.
    4. Mehdipour, R. & Golzardi, S. & Baniamerian, Z., 2020. "Experimental justification of poor thermal and flow performance of solar chimney by an innovative indoor experimental setup," Renewable Energy, Elsevier, vol. 157(C), pages 1089-1101.
    5. Torkfar, Arman & Arefian, Amir & Hosseini-Abardeh, Reza & Bahrami, Mohsen, 2023. "Implementation of active and passive control strategies for power generation in a solar chimney power plant: A technical evaluation of Manzanares prototype," Renewable Energy, Elsevier, vol. 216(C).
    6. Das, Dudul & Kalita, Pankaj & Roy, Omkar, 2018. "Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 111-130.
    7. Sathe, Tushar M. & Dhoble, A.S., 2017. "A review on recent advancements in photovoltaic thermal techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 645-672.
    8. Shahsavar, Amin & Alwaeli, Ali H.A. & Azimi, Neda & Rostami, Shirin & Sopian, Kamaruzzaman & Arıcı, Müslüm & Estellé, Patrice & Nižetić, Sandro & Kasaeian, Alibakhsh & Ali, Hafiz Muhammad & Ma, Zhenju, 2022. "Exergy studies in water-based and nanofluid-based photovoltaic/thermal collectors: Status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Kazemian, Arash & Hosseinzadeh, Mohammad & Sardarabadi, Mohammad & Passandideh-Fard, Mohammad, 2018. "Experimental study of using both ethylene glycol and phase change material as coolant in photovoltaic thermal systems (PVT) from energy, exergy and entropy generation viewpoints," Energy, Elsevier, vol. 162(C), pages 210-223.
    10. Salari, Ali & Parcheforosh, Ali & Hakkaki-Fard, Ali & Amadeh, Ali, 2020. "A numerical study on a photovoltaic thermal system integrated with a thermoelectric generator module," Renewable Energy, Elsevier, vol. 153(C), pages 1261-1271.
    11. Yazdanifard, Farideh & Ameri, Mehran, 2018. "Exergetic advancement of photovoltaic/thermal systems (PV/T): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 529-553.
    12. Maadi, Seyed Reza & Navegi, Ali & Solomin, Evgeny & Ahn, Ho Seon & Wongwises, Somchai & Mahian, Omid, 2021. "Performance improvement of a photovoltaic-thermal system using a wavy-strip insert with and without nanofluid," Energy, Elsevier, vol. 234(C).
    13. Kazemian, Arash & Khatibi, Meysam & Ma, Tao & Peng, Jinqing & Hongxing, Yang, 2023. "A thermal performance-enhancing strategy of photovoltaic thermal systems by applying surface area partially covered by solar cells," Applied Energy, Elsevier, vol. 329(C).
    14. Sardarabadi, Mohammad & Hosseinzadeh, Mohammad & Kazemian, Arash & Passandideh-Fard, Mohammad, 2017. "Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints," Energy, Elsevier, vol. 138(C), pages 682-695.
    15. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    16. Chen, J.F. & Zhang, L. & Dai, Y.J., 2018. "Performance analysis and multi-objective optimization of a hybrid photovoltaic/thermal collector for domestic hot water application," Energy, Elsevier, vol. 143(C), pages 500-516.
    17. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    18. Muhammad Waseem Ahmad & Anthony Mouraud & Yacine Rezgui & Monjur Mourshed, 2018. "Deep Highway Networks and Tree-Based Ensemble for Predicting Short-Term Building Energy Consumption," Energies, MDPI, vol. 11(12), pages 1-21, December.
    19. Zhang, Heng & Yue, Han & Huang, Jiguang & Liang, Kai & Chen, Haiping, 2021. "Experimental studies on a low concentrating photovoltaic/thermal (LCPV/T) collector with a thermoelectric generator (TEG) module," Renewable Energy, Elsevier, vol. 171(C), pages 1026-1040.
    20. Aziz, Mohamed A. & Elsayed, Ahmed M., 2022. "Thermofluid effects of solar chimney geometry on performance parameters," Renewable Energy, Elsevier, vol. 200(C), pages 674-693.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:212:y:2023:i:c:p:717-737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.