IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8606-d975180.html
   My bibliography  Save this article

Fuel Cells in Road Vehicles

Author

Listed:
  • Piotr Piatkowski

    (Department of Mechanical Engineering, Koszalin University of Technology, Raclawicka 15-17, 75-620 Koszalin, Poland)

  • Iwona Michalska-Pozoga

    (Department of Mechanical Engineering, Koszalin University of Technology, Raclawicka 15-17, 75-620 Koszalin, Poland)

  • Marcin Szczepanek

    (Faculty of Marine Engineering, Maritime University of Szczecin, Waly Chrobrego 12, 70-500 Szczecin, Poland)

Abstract

Issues related to the reduction of the environmental impact of means of road transport by the use of electric motors powered by Proton Exchange Membrane (PEM) fuel cells are presented in this article. The overall functional characteristics of electric vehicles are presented, as well as the essence of the operation of a fuel cell. On the basis of analyzing the energy conversion process, significant advantages of electric drive are demonstrated, especially in vehicles for urban and suburban applications. Moreover, the analyzed literature indicated problems of controlling and maintaining fuel cell power caused by its highest dynamic and possible efficiency. This control was related to the variable load conditions of the fuel cell vehicle (FCV) engine. The relationship with the conventional dependencies in the field of vehicle dynamics is demonstrated. The final part of the study is related to the historical outline and examples of already operating fuel cell systems using hydrogen as an energy source for energy conversion to power propulsion vehicle’s engines. In conclusion, the necessity to conduct research in the field of methods for controlling the power of fuel cells that enable their effective adaptation to the temporary load resulting from the conditions of vehicle motion is indicated.

Suggested Citation

  • Piotr Piatkowski & Iwona Michalska-Pozoga & Marcin Szczepanek, 2022. "Fuel Cells in Road Vehicles," Energies, MDPI, vol. 15(22), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8606-:d:975180
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8606/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8606/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Imjung & Kim, Junghun & Lee, Jongsu, 2020. "Dynamic analysis of well-to-wheel electric and hydrogen vehicles greenhouse gas emissions: Focusing on consumer preferences and power mix changes in South Korea," Applied Energy, Elsevier, vol. 260(C).
    2. Qian, Yong & Li, Zilong & Yu, Liang & Wang, Xiaole & Lu, Xingcai, 2019. "Review of the state-of-the-art of particulate matter emissions from modern gasoline fueled engines," Applied Energy, Elsevier, vol. 238(C), pages 1269-1298.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Qahtani, Amjad & González-Garay, Andrés & Bernardi, Andrea & Galán-Martín, Ángel & Pozo, Carlos & Dowell, Niall Mac & Chachuat, Benoit & Guillén-Gosálbez, Gonzalo, 2020. "Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus," Applied Energy, Elsevier, vol. 265(C).
    2. Kim, Kyungah & Choi, Jihye & Lee, Jihee & Lee, Jongsu & Kim, Junghun, 2023. "Public preferences and increasing acceptance of time-varying electricity pricing for demand side management in South Korea," Energy Economics, Elsevier, vol. 119(C).
    3. Liu, Jia & Yang, Hongxing & Zhou, Yuekuan, 2021. "Peer-to-peer trading optimizations on net-zero energy communities with energy storage of hydrogen and battery vehicles," Applied Energy, Elsevier, vol. 302(C).
    4. Junika Napitupulu & Septony B. Siahaan & Sunday Ade Sitorus, 2023. "Renewable Energy and its Moderation on Green Home Selection in Indonesia: Bridging Environment, Product, and Value," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 259-269, November.
    5. Lucian-Ioan Dulău, 2023. "CO 2 Emissions of Battery Electric Vehicles and Hydrogen Fuel Cell Vehicles," Clean Technol., MDPI, vol. 5(2), pages 1-17, June.
    6. Yang, Zijun & Wang, Bowen & Jiao, Kui, 2020. "Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China," Energy, Elsevier, vol. 198(C).
    7. Cinzia Tornatore & Luca Marchitto & Maria Antonietta Costagliola & Gerardo Valentino, 2019. "Experimental Comparative Study on Performance and Emissions of E85 Adopting Different Injection Approaches in a Turbocharged PFI SI Engine," Energies, MDPI, vol. 12(8), pages 1-15, April.
    8. Catapano, Francesco & Di Iorio, Silvana & Magno, Agnese & Vaglieco, Bianca Maria, 2022. "Effect of fuel quality on combustion evolution and particle emissions from PFI and GDI engines fueled with gasoline, ethanol and blend, with focus on 10–23 nm particles," Energy, Elsevier, vol. 239(PB).
    9. Zuo, Qingsong & Xie, Yong & E, Jiaqiang & Zhu, Xinning & Zhang, Bin & Tang, Yuanyou & Zhu, Guohui & Wang, Zhiqi & Zhang, Jianping, 2020. "Effect of different exhaust parameters on NO conversion efficiency enhancement of a dual-carrier catalytic converter in the gasoline engine," Energy, Elsevier, vol. 191(C).
    10. Lee, Jeongeun & Koo, Yoonmo, 2023. "A general equilibrium analysis of individual choice behavior on alternative fuel vehicles," Ecological Economics, Elsevier, vol. 204(PB).
    11. Liu, Jia & Cao, Sunliang & Chen, Xi & Yang, Hongxing & Peng, Jinqing, 2021. "Energy planning of renewable applications in high-rise residential buildings integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 281(C).
    12. Zhu, Xinning & Zuo, Qingsong & Tang, Yuanyou & Xie, Yong & Shen, Zhuang & Yang, Xiaomei, 2022. "Performance enhancement of equilibrium regeneration in a gasoline particulate filter based on field synergy theory," Energy, Elsevier, vol. 244(PA).
    13. Liu, Jia & Chen, Xi & Yang, Hongxing & Shan, Kui, 2021. "Hybrid renewable energy applications in zero-energy buildings and communities integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 290(C).
    14. Park, Soyeong & Maeng, Kyuho & Shin, Jungwoo, 2023. "Efficient subsidy distribution for hydrogen fuel cell vehicles based on demand segmentation," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    15. Moon, Sungho & Kim, Kyungah & Seung, Hyunchan & Kim, Junghun, 2022. "Strategic analysis on effects of technologies, government policies, and consumer perceptions on diffusion of hydrogen fuel cell vehicles," Energy Economics, Elsevier, vol. 115(C).
    16. Jiang, Changzhao & Parker, Matthew C. & Butcher, Daniel & Spencer, Adrian & Garner, Colin P. & Helie, Jerome, 2019. "Comparison of flash boiling resistance of two injector designs and the consequences on downsized gasoline engine emissions," Applied Energy, Elsevier, vol. 254(C).
    17. Vicente Rojas-Reinoso & Stalin Duque-Escobar & Christian Guapulema-Guapulema & José Antonio Soriano, 2023. "Study of the Variation of Fuel Pressure to Improve Spraying and the Range of the Injection Jet," Energies, MDPI, vol. 16(14), pages 1-20, July.
    18. Fan, Qinhao & Liu, Shang & Qi, Yunliang & Cai, Kaiyuan & Wang, Zhi, 2021. "Investigation into ethanol effects on combustion and particle number emissions in a spark-ignition to compression-ignition (SICI) engine," Energy, Elsevier, vol. 233(C).
    19. Paolo Sementa & Cinzia Tornatore & Francesco Catapano & Silvana Di Iorio & Bianca Maria Vaglieco, 2023. "Custom-Designed Pre-Chamber: Investigating the Effects on Small SI Engine in Active and Passive Modes," Energies, MDPI, vol. 16(13), pages 1-24, July.
    20. Moon, HyungBin & Park, Stephen Youngjun & Woo, JongRoul, 2021. "Staying on convention or leapfrogging to eco-innovation?: Identifying early adopters of hydrogen-powered vehicles," Technological Forecasting and Social Change, Elsevier, vol. 171(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8606-:d:975180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.