IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8536-d973291.html
   My bibliography  Save this article

Overview of Consensus Protocol and Its Application to Microgrid Control

Author

Listed:
  • Daniele Ferreira

    (Graduate Program in Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
    Department of Electric Power Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway)

  • Sidelmo Silva

    (Graduate Program in Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil)

  • Waner Silva

    (Instituto de Ciências Tecnológicas (ICT), Universidade Federal de Itajubá (UNIFEI), Itabira 35903-087, Brazil)

  • Danilo Brandao

    (Graduate Program in Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil)

  • Gilbert Bergna

    (Department of Electric Power Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway)

  • Elisabetta Tedeschi

    (Department of Electric Power Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
    Department of Industrial Engineering, University of Trento, 38122 Trento, Italy)

Abstract

Different control strategies for microgrid applications have been developed in the last decade. In order to enhance flexibility, scalability and reliability, special attention has been given to control organisations based on distributed communication infrastructures. Among these strategies, the implementation of consensus protocol stands out to cooperatively steer multi-agent systems (i.e., distributed generators), which is justified by its benefits, such as plug and play capability and enhanced resilience against communication failures. However, as the consensus protocol has a long trajectory of development in different areas of knowledge including multidisciplinary subjects, it may be a challenge to collect all the relevant information for its application in an emerging field. Therefore, the main goal of this paper is to provide the fundamentals of multi-agent systems and consensus protocol to the electrical engineering community, and an overview of its application to control systems for microgrids. The fundamentals of consensus protocol herein cover the concepts, formulations, steady-state and stability analysis for leaderless and leader-following consensus problems, in both continuous- and discrete-time. The overview of the applications summarises the main contributions achieved with this technique in the literature concerning microgrids, as well as the associated challenges and trends.

Suggested Citation

  • Daniele Ferreira & Sidelmo Silva & Waner Silva & Danilo Brandao & Gilbert Bergna & Elisabetta Tedeschi, 2022. "Overview of Consensus Protocol and Its Application to Microgrid Control," Energies, MDPI, vol. 15(22), pages 1-35, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8536-:d:973291
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8536/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8536/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bullich-Massagué, Eduard & Díaz-González, Francisco & Aragüés-Peñalba, Mònica & Girbau-Llistuella, Francesc & Olivella-Rosell, Pol & Sumper, Andreas, 2018. "Microgrid clustering architectures," Applied Energy, Elsevier, vol. 212(C), pages 340-361.
    2. Li Yu & Di Shi & Guangyue Xu & Xiaobin Guo & Zhen Jiang & Chaoyang Jing, 2018. "Consensus Control of Distributed Energy Resources in a Multi-Bus Microgrid for Reactive Power Sharing and Voltage Control," Energies, MDPI, vol. 11(10), pages 1-17, October.
    3. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    4. Jie Ma & Xiandong Ma & Suzana Ilic, 2019. "HVAC-Based Cooperative Algorithms for Demand Side Management in a Microgrid," Energies, MDPI, vol. 12(22), pages 1-19, November.
    5. Xianyong Zhang & Yaohong Huang & Li Li & Wei-Chang Yeh, 2018. "Power and Capacity Consensus Tracking of Distributed Battery Storage Systems in Modular Microgrids," Energies, MDPI, vol. 11(6), pages 1-25, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Sulaiman Alsafran, 2023. "A Feasibility Study of Implementing IEEE 1547 and IEEE 2030 Standards for Microgrid in the Kingdom of Saudi Arabia," Energies, MDPI, vol. 16(4), pages 1-15, February.
    2. Alexander Micallef & Josep M. Guerrero & Juan C. Vasquez, 2023. "New Horizons for Microgrids: From Rural Electrification to Space Applications," Energies, MDPI, vol. 16(4), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bandeiras, F. & Pinheiro, E. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Review of the cooperation and operation of microgrid clusters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Vinny Motjoadi & Pitshou N. Bokoro & Moses O. Onibonoje, 2020. "A Review of Microgrid-Based Approach to Rural Electrification in South Africa: Architecture and Policy Framework," Energies, MDPI, vol. 13(9), pages 1-22, May.
    3. El-Bidairi, Kutaiba S. & Nguyen, Hung Duc & Mahmoud, Thair S. & Jayasinghe, S.D.G. & Guerrero, Josep M., 2020. "Optimal sizing of Battery Energy Storage Systems for dynamic frequency control in an islanded microgrid: A case study of Flinders Island, Australia," Energy, Elsevier, vol. 195(C).
    4. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    5. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    6. Namita Kumari & Ankush Sharma & Binh Tran & Naveen Chilamkurti & Damminda Alahakoon, 2023. "A Comprehensive Review of Digital Twin Technology for Grid-Connected Microgrid Systems: State of the Art, Potential and Challenges Faced," Energies, MDPI, vol. 16(14), pages 1-19, July.
    7. Michael H. Spiegel & Eric M. S. P. Veith & Thomas I. Strasser, 2020. "The Spectrum of Proactive, Resilient Multi-Microgrid Scheduling: A Systematic Literature Review," Energies, MDPI, vol. 13(17), pages 1-37, September.
    8. Nikos Kampelis & Elisavet Tsekeri & Dionysia Kolokotsa & Kostas Kalaitzakis & Daniela Isidori & Cristina Cristalli, 2018. "Development of Demand Response Energy Management Optimization at Building and District Levels Using Genetic Algorithm and Artificial Neural Network Modelling Power Predictions," Energies, MDPI, vol. 11(11), pages 1-22, November.
    9. Villanueva-Rosario, Junior Alexis & Santos-García, Félix & Aybar-Mejía, Miguel Euclides & Mendoza-Araya, Patricio & Molina-García, Angel, 2022. "Coordinated ancillary services, market participation and communication of multi-microgrids: A review," Applied Energy, Elsevier, vol. 308(C).
    10. Farhat Afzah Samoon & Ikhlaq Hussain & Sheikh Javed Iqbal, 2023. "ILA Optimisation Based Control for Enhancing DC Link Voltage with Seamless and Adaptive VSC Control in a PV-BES Based AC Microgrid," Energies, MDPI, vol. 16(21), pages 1-23, October.
    11. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    12. Dimitrios Trigkas & Chrysovalantou Ziogou & Spyros Voutetakis & Simira Papadopoulou, 2021. "Virtual Energy Storage in RES-Powered Smart Grids with Nonlinear Model Predictive Control," Energies, MDPI, vol. 14(4), pages 1-22, February.
    13. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    14. Matija Kostelac & Lin Herenčić & Tomislav Capuder, 2022. "Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options," Energies, MDPI, vol. 15(4), pages 1-17, February.
    15. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    16. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    17. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    18. Soheil Mohseni & Alan C. Brent & Daniel Burmester, 2020. "Community Resilience-Oriented Optimal Micro-Grid Capacity Expansion Planning: The Case of Totarabank Eco-Village, New Zealand," Energies, MDPI, vol. 13(15), pages 1-29, August.
    19. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
    20. Hammad Alnuman & Kuo-Hsien Hsia & Mohammadreza Askari Sepestanaki & Emad M. Ahmed & Saleh Mobayen & Ammar Armghan, 2023. "Design of Continuous Finite-Time Controller Based on Adaptive Tuning Approach for Disturbed Boost Converters," Mathematics, MDPI, vol. 11(7), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8536-:d:973291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.