IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4276-d285313.html
   My bibliography  Save this article

HVAC-Based Cooperative Algorithms for Demand Side Management in a Microgrid

Author

Listed:
  • Jie Ma

    (Department of Engineering, Lancaster University, Lancaster LA1 4YW, UK)

  • Xiandong Ma

    (Department of Engineering, Lancaster University, Lancaster LA1 4YW, UK)

  • Suzana Ilic

    (Lancaster Environment Center, Lancaster University, Lancaster LA1 4YW, UK)

Abstract

The high penetration of renewable power generators and various loads have brought a great challenge for dispatching energy in a microgrid system. Heating ventilation air conditioning (HVAC) system, as a household appliance with high popularity, can be considered as an effective technology to alleviate energy dispatch issues. This paper presents novel distributed algorithms based on HVAC to solve the demand side management problem, where the microgrid system with HVAC units is considered as a multi-agent system (MAS). The approach provides a desirable operating frequency signal for each HVAC based on the power mismatch value occurring on each local bus. It utilizes demand response of the HVAC units to minimize the supply-demand mismatch, thus reducing the quantity and capacity of energy storage devices potentially to be required. Compared with existing approaches focusing on the distributed algorithms under a fixed communication network, this paper addresses a consensus problem under a switching topology by using the Lyapunov argument. It is verified that a jointly strong and connected topology is a sufficient condition in order to achieve an average consensus for a time-varying topology. A number of cases are studied to evaluate the effectiveness of the algorithms by taking into account its power constraints, dynamic behaviors, anti-damage characteristics and time-varying communication topology. Modelling these system interactions has demonstrated the feasibility of the proposed microgrid system.

Suggested Citation

  • Jie Ma & Xiandong Ma & Suzana Ilic, 2019. "HVAC-Based Cooperative Algorithms for Demand Side Management in a Microgrid," Energies, MDPI, vol. 12(22), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4276-:d:285313
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4276/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4276/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manuel Castillo-Cagigal & Eduardo Matallanas & Estefanía Caamaño-Martín & Álvaro Gutiérrez Martín, 2018. "SwarmGrid: Demand-Side Management with Distributed Energy Resources Based on Multifrequency Agent Coordination," Energies, MDPI, vol. 11(9), pages 1-16, September.
    2. Nikmehr, Nima & Najafi-Ravadanegh, Sajad & Khodaei, Amin, 2017. "Probabilistic optimal scheduling of networked microgrids considering time-based demand response programs under uncertainty," Applied Energy, Elsevier, vol. 198(C), pages 267-279.
    3. Min-fan He & Fu-xing Zhang & Yong Huang & Jian Chen & Jue Wang & Rui Wang, 2019. "A Distributed Demand Side Energy Management Algorithm for Smart Grid," Energies, MDPI, vol. 12(3), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    2. Edward Smith & Duane Robinson & Ashish Agalgaonkar, 2021. "Cooperative Control of Microgrids: A Review of Theoretical Frameworks, Applications and Recent Developments," Energies, MDPI, vol. 14(23), pages 1-34, December.
    3. Daniele Ferreira & Sidelmo Silva & Waner Silva & Danilo Brandao & Gilbert Bergna & Elisabetta Tedeschi, 2022. "Overview of Consensus Protocol and Its Application to Microgrid Control," Energies, MDPI, vol. 15(22), pages 1-35, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grover-Silva, Etta & Heleno, Miguel & Mashayekh, Salman & Cardoso, Gonçalo & Girard, Robin & Kariniotakis, George, 2018. "A stochastic optimal power flow for scheduling flexible resources in microgrids operation," Applied Energy, Elsevier, vol. 229(C), pages 201-208.
    2. Anvari-Moghaddam, Amjad & Rahimi-Kian, Ashkan & Mirian, Maryam S. & Guerrero, Josep M., 2017. "A multi-agent based energy management solution for integrated buildings and microgrid system," Applied Energy, Elsevier, vol. 203(C), pages 41-56.
    3. Pedro Faria & Zita Vale, 2019. "Distributed Energy Resources Management 2018," Energies, MDPI, vol. 13(1), pages 1-4, December.
    4. Omaji Samuel & Nadeem Javaid & Mahmood Ashraf & Farruh Ishmanov & Muhammad Khalil Afzal & Zahoor Ali Khan, 2018. "Jaya based Optimization Method with High Dispatchable Distributed Generation for Residential Microgrid," Energies, MDPI, vol. 11(6), pages 1-29, June.
    5. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    6. Ahsan, Syed M. & Khan, Hassan A. & Hassan, Naveed-ul & Arif, Syed M. & Lie, Tek-Tjing, 2020. "Optimized power dispatch for solar photovoltaic-storage system with multiple buildings in bilateral contracts," Applied Energy, Elsevier, vol. 273(C).
    7. Mehrjerdi, Hasan & Bornapour, Mosayeb & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh, 2019. "Unified energy management and load control in building equipped with wind-solar-battery incorporating electric and hydrogen vehicles under both connected to the grid and islanding modes," Energy, Elsevier, vol. 168(C), pages 919-930.
    8. Chen, Yang & Park, Byungkwon & Kou, Xiao & Hu, Mengqi & Dong, Jin & Li, Fangxing & Amasyali, Kadir & Olama, Mohammed, 2020. "A comparison study on trading behavior and profit distribution in local energy transaction games," Applied Energy, Elsevier, vol. 280(C).
    9. Panda, Debashish & Ramteke, Manojkumar, 2019. "Preventive crude oil scheduling under demand uncertainty using structure adapted genetic algorithm," Applied Energy, Elsevier, vol. 235(C), pages 68-82.
    10. Krkoleva Mateska, Aleksandra & Borozan, Vesna & Krstevski, Petar & Taleski, Rubin, 2018. "Controllable load operation in microgrids using control scheme based on gossip algorithm," Applied Energy, Elsevier, vol. 210(C), pages 1336-1346.
    11. Fahad R. Albogamy & Ghulam Hafeez & Imran Khan & Sheraz Khan & Hend I. Alkhammash & Faheem Ali & Gul Rukh, 2021. "Efficient Energy Optimization Day-Ahead Energy Forecasting in Smart Grid Considering Demand Response and Microgrids," Sustainability, MDPI, vol. 13(20), pages 1-29, October.
    12. Yang, Shenbo & Tan, Zhongfu & Lin, Hongyu & Li, Peng & De, Gejirifu & Zhou, Feng’ao & Ju, Liwei, 2020. "A two-stage optimization model for Park Integrated Energy System operation and benefit allocation considering the effect of Time-Of-Use energy price," Energy, Elsevier, vol. 195(C).
    13. Zhang, Bingying & Li, Qiqiang & Wang, Luhao & Feng, Wei, 2018. "Robust optimization for energy transactions in multi-microgrids under uncertainty," Applied Energy, Elsevier, vol. 217(C), pages 346-360.
    14. Mehdizadeh, Ali & Taghizadegan, Navid & Salehi, Javad, 2018. "Risk-based energy management of renewable-based microgrid using information gap decision theory in the presence of peak load management," Applied Energy, Elsevier, vol. 211(C), pages 617-630.
    15. Li, Yang & Yang, Zhen & Li, Guoqing & Mu, Yunfei & Zhao, Dongbo & Chen, Chen & Shen, Bo, 2018. "Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing," Applied Energy, Elsevier, vol. 232(C), pages 54-68.
    16. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    17. Mousavizadeh, Saeed & Haghifam, Mahmoud-Reza & Shariatkhah, Mohammad-Hossein, 2018. "A linear two-stage method for resiliency analysis in distribution systems considering renewable energy and demand response resources," Applied Energy, Elsevier, vol. 211(C), pages 443-460.
    18. Seshu Kumar, R. & Phani Raghav, L. & Koteswara Raju, D. & Singh, Arvind R., 2021. "Impact of multiple demand side management programs on the optimal operation of grid-connected microgrids," Applied Energy, Elsevier, vol. 301(C).
    19. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    20. Jong-Chan Kim & Jun-Ho Huh & Jae-Sub Ko, 2020. "Optimization Design and Test Bed of Fuzzy Control Rule Base for PV System MPPT in Micro Grid," Sustainability, MDPI, vol. 12(9), pages 1-25, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4276-:d:285313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.