IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8448-d970261.html
   My bibliography  Save this article

WSPRT Methods for Improving Power System Automation Devices in the Conditions of Distributed Generation Sources Operation

Author

Listed:
  • Aleksandr Kulikov

    (Department of Electroenergetics, Power Supply and Power Electronics, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 603950 Nizhny Novgorod, Russia)

  • Pavel Ilyushin

    (Department of Research on the Relationship between Energy and the Economy, Energy Research Institute of the Russian Academy of Sciences, 117186 Moscow, Russia)

  • Anton Loskutov

    (Department of Electroenergetics, Power Supply and Power Electronics, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 603950 Nizhny Novgorod, Russia)

  • Konstantin Suslov

    (Department of Hydropower and Renewable Energy, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia)

  • Sergey Filippov

    (Department of Research on the Relationship between Energy and the Economy, Energy Research Institute of the Russian Academy of Sciences, 117186 Moscow, Russia)

Abstract

The trend towards the decentralization and decarbonization of the energy sector stimulates the adoption of generation facilities based on renewable energy sources (RES) and distributed generation (DG) facilities that utilize secondary energy resources. Operation features of DG facilities, such as a high speed of electromechanical transient processes and significant deviations of power quality indicators from standard values, require improvement and an increase in the speed of automation devices. Modern electroautomatic devices must determine the operating regions (normal and emergency) and adapt the operation algorithms to the conditions of the current mode. The study presented proposes methods developed to use the Wald Sequential Probability Ratio Test (WSPRT) to improve the reliability and efficiency of the power system automation devices. The paper provides examples of using WSPRT in the devices of automatic frequency load shedding, automatic transformer disconnection, and power quality control. The results of mathematical modeling confirm the high performance of WSPRT in power system automation devices owing to an increase in the reliability of operating regions identification and speed of response. For example, in the automatic frequency load shedding (AFLS) algorithm for a network with DG facilities at a sampling rate that meets the requirements of the IEC 61850 (80 samples per period), the acceptance time does not exceed 1 ms. The study substantiates the need to use WSPRT in the logic blocks of automation devices employed in active distribution networks.

Suggested Citation

  • Aleksandr Kulikov & Pavel Ilyushin & Anton Loskutov & Konstantin Suslov & Sergey Filippov, 2022. "WSPRT Methods for Improving Power System Automation Devices in the Conditions of Distributed Generation Sources Operation," Energies, MDPI, vol. 15(22), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8448-:d:970261
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8448/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8448/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Willis, K. G. & Garrod, G. D., 1997. "Electricity supply reliability : Estimating the value of lost load," Energy Policy, Elsevier, vol. 25(1), pages 97-103, January.
    2. Xu, Jiuping & Liu, Tingting, 2020. "Technological paradigm-based approaches towards challenges and policy shifts for sustainable wind energy development," Energy Policy, Elsevier, vol. 142(C).
    3. Da Hye Lee & In Hong Chang & Hoang Pham, 2020. "Software Reliability Model with Dependent Failures and SPRT," Mathematics, MDPI, vol. 8(8), pages 1-14, August.
    4. Huan Zhang, 2021. "Technology Innovation, Economic Growth and Carbon Emissions in the Context of Carbon Neutrality: Evidence from BRICS," Sustainability, MDPI, vol. 13(20), pages 1-22, October.
    5. Feng Dong & Chang Qin & Xiaoyun Zhang & Xu Zhao & Yuling Pan & Yujin Gao & Jiao Zhu & Yangfan Li, 2021. "Towards Carbon Neutrality: The Impact of Renewable Energy Development on Carbon Emission Efficiency," IJERPH, MDPI, vol. 18(24), pages 1-23, December.
    6. Andrey Rylov & Pavel Ilyushin & Aleksandr Kulikov & Konstantin Suslov, 2021. "Testing Photovoltaic Power Plants for Participation in General Primary Frequency Control under Various Topology and Operating Conditions," Energies, MDPI, vol. 14(16), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavel Ilyushin & Sergey Filippov & Aleksandr Kulikov & Konstantin Suslov & Dmitriy Karamov, 2022. "Intelligent Control of the Energy Storage System for Reliable Operation of Gas-Fired Reciprocating Engine Plants in Systems of Power Supply to Industrial Facilities," Energies, MDPI, vol. 15(17), pages 1-21, August.
    2. Qing Tian & Chun-Wu Yeh & Chih-Chiang Fang, 2022. "Bayesian Decision Making of an Imperfect Debugging Software Reliability Growth Model with Consideration of Debuggers’ Learning and Negligence Factors," Mathematics, MDPI, vol. 10(10), pages 1-21, May.
    3. Shuguang Liu & Jiayi Wang & Yin Long, 2023. "Research into the Spatiotemporal Characteristics and Influencing Factors of Technological Innovation in China’s Natural Gas Industry from the Perspective of Energy Transition," Sustainability, MDPI, vol. 15(9), pages 1-34, April.
    4. Mier, Mathias, 2021. "Efficient pricing of electricity revisited," Energy Economics, Elsevier, vol. 104(C).
    5. Neuhoff, Karsten & De Vries, Laurens, 2004. "Insufficient incentives for investment in electricity generations," Utilities Policy, Elsevier, vol. 12(4), pages 253-267, December.
    6. Natalia Bakhtadze & Evgeny Maximov & Natalia Maximova, 2021. "Digital Identification Algorithms for Primary Frequency Control in Unified Power System," Mathematics, MDPI, vol. 9(22), pages 1-17, November.
    7. Andrey Achitaev & Pavel Ilyushin & Konstantin Suslov & Sergey Kobyletski, 2022. "Dynamic Simulation of Starting and Emergency Conditions of a Hydraulic Unit Based on a Francis Turbine," Energies, MDPI, vol. 15(21), pages 1-18, October.
    8. De Vries, Laurens J., 2007. "Generation adequacy: Helping the market do its job," Utilities Policy, Elsevier, vol. 15(1), pages 20-35, March.
    9. Coll-Mayor, Debora & Pardo, Juan & Perez-Donsion, Manuel, 2012. "Methodology based on the value of lost load for evaluating economical losses due to disturbances in the power quality," Energy Policy, Elsevier, vol. 50(C), pages 407-418.
    10. Alexandros Korkovelos & Dimitrios Mentis & Morgan Bazilian & Mark Howells & Anwar Saraj & Sulaiman Fayez Hotaki & Fanny Missfeldt-Ringius, 2020. "Supporting Electrification Policy in Fragile States: A Conflict-Adjusted Geospatial Least Cost Approach for Afghanistan," Sustainability, MDPI, vol. 12(3), pages 1-34, January.
    11. Lilliestam, Johan & Ellenbeck, Saskia, 2011. "Energy security and renewable electricity trade--Will Desertec make Europe vulnerable to the "energy weapon"?," Energy Policy, Elsevier, vol. 39(6), pages 3380-3391, June.
    12. Delmaria Richards & Helmut Yabar & Takeshi Mizunoya, 2022. "Spatial Mapping of Jamaica’s High-Resolution Wind Atlas: An Environmental-Sociotechnical Account," Sustainability, MDPI, vol. 14(19), pages 1-25, September.
    13. Jamil, Muhammad Hamza & Ullah, Kafait & Saleem, Noor & Abbas, Faisal & Khalid, Hassan Abdullah, 2022. "Did the restructuring of the electricity generation sector increase social welfare in Pakistan?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    14. Dmitriy Karamov & Pavel Ilyushin & Ilya Minarchenko & Sergey Filippov & Konstantin Suslov, 2023. "The Role of Energy Performance Agreements in the Sustainable Development of Decentralized Energy Systems: Methodology for Determining the Equilibrium Conditions of the Contract," Energies, MDPI, vol. 16(6), pages 1-12, March.
    15. Hyunsoo Kang, 2021. "CO 2 Emissions Embodied in International Trade and Economic Growth: Empirical Evidence for OECD and Non-OECD Countries," Sustainability, MDPI, vol. 13(21), pages 1-20, November.
    16. Mduduzi Biyase & Talent Zwane & Precious Mncayi & Mokgadi Maleka, 2023. "Do Technological Innovation and Financial Development Affect Inequality? Evidence from BRICS Countries," IJFS, MDPI, vol. 11(1), pages 1-18, March.
    17. Muhammad Shahzad Sardar & Nabila Asghar & Mubbasher Munir & Reda Alhajj & Hafeez ur Rehman, 2022. "Moderation of Services’ EKC through Transportation Competitiveness: PQR Model in Global Prospective," IJERPH, MDPI, vol. 20(1), pages 1-17, December.
    18. Qing Tian & Chih-Chiang Fang & Chun-Wu Yeh, 2022. "Software Release Assessment under Multiple Alternatives with Consideration of Debuggers’ Learning Rate and Imperfect Debugging Environment," Mathematics, MDPI, vol. 10(10), pages 1-24, May.
    19. Landegren, Finn & Johansson, Jonas & Samuelsson, Olof, 2019. "Quality of supply regulations versus societal priorities regarding electricity outage consequences: Case study in a Swedish context," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).
    20. Jun Shi & Xiang Cao & Zhi Chen, 2023. "Pathways for Integrating the Concept of Carbon Neutrality into the Talent Cultivation Process: A Case Study of Animal Production Programs in Chinese Agricultural Colleges and Universities," Sustainability, MDPI, vol. 15(23), pages 1-10, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8448-:d:970261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.