IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6333-d902214.html
   My bibliography  Save this article

Intelligent Control of the Energy Storage System for Reliable Operation of Gas-Fired Reciprocating Engine Plants in Systems of Power Supply to Industrial Facilities

Author

Listed:
  • Pavel Ilyushin

    (Department of Research on the Relationship between Energy and the Economy, Energy Research Institute of the Russian Academy of Sciences, 117186 Moscow, Russia)

  • Sergey Filippov

    (Department of Research on the Relationship between Energy and the Economy, Energy Research Institute of the Russian Academy of Sciences, 117186 Moscow, Russia)

  • Aleksandr Kulikov

    (Department of Electroenergetics, Power Supply and Power Electronics, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 603950 Nizhny Novgorod, Russia)

  • Konstantin Suslov

    (Department of Power Supply and Electrical Engineering, Irkutsk National Research Technical University, 664074 Irkutsk, Russia
    Department of Hydropower and Renewable Energy, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia)

  • Dmitriy Karamov

    (Department of Research on the Relationship between Energy and the Economy, Energy Research Institute of the Russian Academy of Sciences, 117186 Moscow, Russia)

Abstract

Gas-fired reciprocating engine plants (GREPs) are widely used in power supply systems of industrial facilities, which allows for ensuring the operation of electrical loads in case of accidents in the power system. Operating experience attests to the fact that during islanded operations, GREPs are shut down by process protections or protective relays in the event of severe disturbances. This leads to complete load shedding, which is accompanied by losses and damage to industrial facilities. Severe disturbances include the following ones: large load surges on GREPs due to one of them being switched off, the group starting of electric motors, and load shedding (more than 50%) during short circuits or disconnection of process lines. Energy storage systems (ESS) have the ability to compensate for instantaneous power imbalances to prevent GREPs from switching off. The authors of this study have developed methods for intelligent control of the ESS that allow one to solve two problems: prevention of GREPs shutdowns under short-term frequency and voltage deviations as well as preservation of the calendar and cycling lifetime of battery storage (BS) of the GREP. The first method does not require performing the calculation of adjustments of control actions for active and reactive power on the ESS online but rather determines them by the value of frequency deviations and the voltage sag configuration, which greatly simplifies the system of automatic control of the ESS. The second method, which consists in dividing the steady-state power/frequency characteristic into sections with different droops that are chosen depending on the current load of the ESS and the battery state of charge, and offsetting it according to a specified pattern, allows for preventing the premature loss of power capacity of the ESS BS.

Suggested Citation

  • Pavel Ilyushin & Sergey Filippov & Aleksandr Kulikov & Konstantin Suslov & Dmitriy Karamov, 2022. "Intelligent Control of the Energy Storage System for Reliable Operation of Gas-Fired Reciprocating Engine Plants in Systems of Power Supply to Industrial Facilities," Energies, MDPI, vol. 15(17), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6333-:d:902214
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6333/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6333/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghadi, Mojtaba Jabbari & Rajabi, Amin & Ghavidel, Sahand & Azizivahed, Ali & Li, Li & Zhang, Jiangfeng, 2019. "From active distribution systems to decentralized microgrids: A review on regulations and planning approaches based on operational factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Mehigan, L. & Deane, J.P. & Gallachóir, B.P.Ó. & Bertsch, V., 2018. "A review of the role of distributed generation (DG) in future electricity systems," Energy, Elsevier, vol. 163(C), pages 822-836.
    3. Sandro Sitompul & Yuki Hanawa & Verapatra Bupphaves & Goro Fujita, 2020. "State of Charge Control Integrated with Load Frequency Control for BESS in Islanded Microgrid," Energies, MDPI, vol. 13(18), pages 1-19, September.
    4. Huan Zhang, 2021. "Technology Innovation, Economic Growth and Carbon Emissions in the Context of Carbon Neutrality: Evidence from BRICS," Sustainability, MDPI, vol. 13(20), pages 1-22, October.
    5. Yun-Su Kim & Chul-Sang Hwang & Eung-Sang Kim & Changhee Cho, 2016. "State of Charge-Based Active Power Sharing Method in a Standalone Microgrid with High Penetration Level of Renewable Energy Sources," Energies, MDPI, vol. 9(7), pages 1-13, June.
    6. Feng Dong & Chang Qin & Xiaoyun Zhang & Xu Zhao & Yuling Pan & Yujin Gao & Jiao Zhu & Yangfan Li, 2021. "Towards Carbon Neutrality: The Impact of Renewable Energy Development on Carbon Emission Efficiency," IJERPH, MDPI, vol. 18(24), pages 1-23, December.
    7. Ilia Shushpanov & Konstantin Suslov & Pavel Ilyushin & Denis N. Sidorov, 2021. "Towards the Flexible Distribution Networks Design Using the Reliability Performance Metric," Energies, MDPI, vol. 14(19), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladislav Volnyi & Pavel Ilyushin & Konstantin Suslov & Sergey Filippov, 2023. "Approaches to Building AC and AC–DC Microgrids on Top of Existing Passive Distribution Networks," Energies, MDPI, vol. 16(15), pages 1-26, August.
    2. Aleksey Suvorov & Alisher Askarov & Nikolay Ruban & Vladimir Rudnik & Pavel Radko & Andrey Achitaev & Konstantin Suslov, 2023. "An Adaptive Inertia and Damping Control Strategy Based on Enhanced Virtual Synchronous Generator Model," Mathematics, MDPI, vol. 11(18), pages 1-29, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aleksandr Kulikov & Pavel Ilyushin & Anton Loskutov & Konstantin Suslov & Sergey Filippov, 2022. "WSPRT Methods for Improving Power System Automation Devices in the Conditions of Distributed Generation Sources Operation," Energies, MDPI, vol. 15(22), pages 1-20, November.
    2. Pavel Ilyushin & Aleksandr Kulikov & Konstantin Suslov & Sergey Filippov, 2022. "An Approach to Assessing Spatial Coherence of Current and Voltage Signals in Electrical Networks," Mathematics, MDPI, vol. 10(10), pages 1-15, May.
    3. Shehzar Shahzad Sheikh & Mahnoor Anjum & Muhammad Abdullah Khan & Syed Ali Hassan & Hassan Abdullah Khalid & Adel Gastli & Lazhar Ben-Brahim, 2020. "A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach," Energies, MDPI, vol. 13(14), pages 1-16, July.
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Sandro Sitompul & Goro Fujita, 2021. "Impact of Advanced Load-Frequency Control on Optimal Size of Battery Energy Storage in Islanded Microgrid System," Energies, MDPI, vol. 14(8), pages 1-18, April.
    6. Shuguang Liu & Jiayi Wang & Yin Long, 2023. "Research into the Spatiotemporal Characteristics and Influencing Factors of Technological Innovation in China’s Natural Gas Industry from the Perspective of Energy Transition," Sustainability, MDPI, vol. 15(9), pages 1-34, April.
    7. Shen, Boyang & Chen, Yu & Li, Chuanyue & Wang, Sheng & Chen, Xiaoyuan, 2021. "Superconducting fault current limiter (SFCL): Experiment and the simulation from finite-element method (FEM) to power/energy system software," Energy, Elsevier, vol. 234(C).
    8. Luo, Lizi & Wu, Zhi & Gu, Wei & Huang, He & Gao, Song & Han, Jun, 2020. "Coordinated allocation of distributed generation resources and electric vehicle charging stations in distribution systems with vehicle-to-grid interaction," Energy, Elsevier, vol. 192(C).
    9. Xuejun Zheng & Shaorong Wang & Zia Ullah & Mengmeng Xiao & Chang Ye & Zhangping Lei, 2021. "A Novel Optimization Method for a Multi-Year Planning Scheme of an Active Distribution Network in a Large Planning Zone," Energies, MDPI, vol. 14(12), pages 1-16, June.
    10. Sohail Sarwar & Desen Kirli & Michael M. C. Merlin & Aristides E. Kiprakis, 2022. "Major Challenges towards Energy Management and Power Sharing in a Hybrid AC/DC Microgrid: A Review," Energies, MDPI, vol. 15(23), pages 1-30, November.
    11. Jae-Won Chang & Gyu-Sub Lee & Hyeon-Jin Moon & Mark B. Glick & Seung-Il Moon, 2019. "Coordinated Frequency and State-of-Charge Control with Multi-Battery Energy Storage Systems and Diesel Generators in an Isolated Microgrid," Energies, MDPI, vol. 12(9), pages 1-16, April.
    12. Ghadi, Mojtaba Jabbari & Azizivahed, Ali & Mishra, Dillip Kumar & Li, Li & Zhang, Jiangfeng & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Application of small-scale compressed air energy storage in the daily operation of an active distribution system," Energy, Elsevier, vol. 231(C).
    13. Amro M Elshurafa & Abdel Rahman Muhsen, 2019. "The Upper Limit of Distributed Solar PV Capacity in Riyadh: A GIS-Assisted Study," Sustainability, MDPI, vol. 11(16), pages 1-20, August.
    14. Mittelviefhaus, Moritz & Pareschi, Giacomo & Allan, James & Georges, Gil & Boulouchos, Konstantinos, 2021. "Optimal investment and scheduling of residential multi-energy systems including electric mobility: A cost-effective approach to climate change mitigation," Applied Energy, Elsevier, vol. 301(C).
    15. Liu, Liuchen & Cui, Guomin & Chen, Jiaxing & Huang, Xiaohuang & Li, Di, 2022. "Two-stage superstructure model for optimization of distributed energy systems (DES) part I: Model development and verification," Energy, Elsevier, vol. 245(C).
    16. Jie Wu & Ying Fan & Yan Xia, 2017. "How Can China Achieve Its Nationally Determined Contribution Targets Combining Emissions Trading Scheme and Renewable Energy Policies?," Energies, MDPI, vol. 10(8), pages 1-20, August.
    17. Yuriy Leonidovich Zhukovskiy & Margarita Sergeevna Kovalchuk & Daria Evgenievna Batueva & Nikita Dmitrievich Senchilo, 2021. "Development of an Algorithm for Regulating the Load Schedule of Educational Institutions Based on the Forecast of Electric Consumption within the Framework of Application of the Demand Response," Sustainability, MDPI, vol. 13(24), pages 1-26, December.
    18. Hoicka, Christina E. & Lowitzsch, Jens & Brisbois, Marie Claire & Kumar, Ankit & Ramirez Camargo, Luis, 2021. "Implementing a just renewable energy transition: Policy advice for transposing the new European rules for renewable energy communities," Energy Policy, Elsevier, vol. 156(C).
    19. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
    20. Wadim Strielkowski & Lubomír Civín & Elena Tarkhanova & Manuela Tvaronavičienė & Yelena Petrenko, 2021. "Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review," Energies, MDPI, vol. 14(24), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6333-:d:902214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.