IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5179-d619258.html
   My bibliography  Save this article

Testing Photovoltaic Power Plants for Participation in General Primary Frequency Control under Various Topology and Operating Conditions

Author

Listed:
  • Andrey Rylov

    (Company Management, SIGMA Limited Liability Company, 295034 Simferopol, Russia)

  • Pavel Ilyushin

    (Department of Research on the Relationship between Energy and the Economy, Energy Research Institute of the Russian Academy of Sciences, 117186 Moscow, Russia)

  • Aleksandr Kulikov

    (Department of Electroenergetics, Power Supply and Power Electronics, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 603950 Nizhny Novgorod, Russia)

  • Konstantin Suslov

    (Department of Power Supply and Electrical Engineering, Irkutsk National Research Technical University, 664074 Irkutsk, Russia)

Abstract

The energy transition is accompanied by developing a digital decentralized low-carbon energy infrastructure with renewable-based generating plants as its main elements. In 2020, 15 photovoltaic power plants (PVPs) with an installed capacity of 364 MW were commissioned in Russia, which is 21.08% of the total installed PVP capacity of Russia. The findings of an analysis of Russia’s current regulatory and technical documents (RTD) concerning the frequency and active power flow control are presented. They indicate that all PVPs must participate in the general primary frequency control (GPFC). This requirement is due to large frequency deviations of transient processes resulting from an emergency active power shortage, which can shut down frequency-maintaining generating plants by relay or process protection devices and industrial consumers with significant damage to them. The requirements suggest full-scale tests of PVP to confirm their readiness for participation in GPFC. The program and results of checking the algorithm of change in the PVP active power, depending on frequency, are demonstrated with an example of one PVP. The full-scale tests confirmed the compliance of the certified PVP with this requirement. The plans for involving PVPs in the power flow control under various topology and operation conditions are considered.

Suggested Citation

  • Andrey Rylov & Pavel Ilyushin & Aleksandr Kulikov & Konstantin Suslov, 2021. "Testing Photovoltaic Power Plants for Participation in General Primary Frequency Control under Various Topology and Operating Conditions," Energies, MDPI, vol. 14(16), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5179-:d:619258
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5179/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5179/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seneviratne, Chinthaka & Ozansoy, C., 2016. "Frequency response due to a large generator loss with the increasing penetration of wind/PV generation – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 659-668.
    2. Kakran, Sandeep & Chanana, Saurabh, 2018. "Smart operations of smart grids integrated with distributed generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 524-535.
    3. Henning Thiesen & Clemens Jauch & Arne Gloe, 2016. "Design of a System Substituting Today’s Inherent Inertia in the European Continental Synchronous Area," Energies, MDPI, vol. 9(8), pages 1-12, July.
    4. Rajan, Rijo & Fernandez, Francis M. & Yang, Yongheng, 2021. "Primary frequency control techniques for large-scale PV-integrated power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Tielens, Pieter & Van Hertem, Dirk, 2016. "The relevance of inertia in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 999-1009.
    6. Claudia Rahmann & Alfredo Castillo, 2014. "Fast Frequency Response Capability of Photovoltaic Power Plants: The Necessity of New Grid Requirements and Definitions," Energies, MDPI, vol. 7(10), pages 1-17, September.
    7. Kamal Shahid & Müfit Altin & Lars Møller Mikkelsen & Rasmus Løvenstein Olsen & Florin Iov, 2018. "ICT Based Performance Evaluation of Primary Frequency Control Support from Renewable Power Plants in Smart Grids," Energies, MDPI, vol. 11(6), pages 1-26, May.
    8. Lombardi, P. & Sokolnikova, T. & Suslov, K. & Voropai, N. & Styczynski, Z.A., 2016. "Isolated power system in Russia: A chance for renewable energies?," Renewable Energy, Elsevier, vol. 90(C), pages 532-541.
    9. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2017. "Comprehensive overview of grid interfaced solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 316-332.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrey Achitaev & Pavel Ilyushin & Konstantin Suslov & Sergey Kobyletski, 2022. "Dynamic Simulation of Starting and Emergency Conditions of a Hydraulic Unit Based on a Francis Turbine," Energies, MDPI, vol. 15(21), pages 1-18, October.
    2. Dmitriy Karamov & Pavel Ilyushin & Ilya Minarchenko & Sergey Filippov & Konstantin Suslov, 2023. "The Role of Energy Performance Agreements in the Sustainable Development of Decentralized Energy Systems: Methodology for Determining the Equilibrium Conditions of the Contract," Energies, MDPI, vol. 16(6), pages 1-12, March.
    3. Natalia Bakhtadze & Evgeny Maximov & Natalia Maximova, 2021. "Digital Identification Algorithms for Primary Frequency Control in Unified Power System," Mathematics, MDPI, vol. 9(22), pages 1-17, November.
    4. Olga Shepovalova & Yuri Arbuzov & Vladimir Evdokimov & Pavel Ilyushin & Konstantin Suslov, 2023. "Assessment of the Gross, Technical and Economic Potential of Region’s Solar Energy for Photovoltaic Energetics," Energies, MDPI, vol. 16(3), pages 1-22, January.
    5. Aleksandr Kulikov & Pavel Ilyushin & Anton Loskutov & Konstantin Suslov & Sergey Filippov, 2022. "WSPRT Methods for Improving Power System Automation Devices in the Conditions of Distributed Generation Sources Operation," Energies, MDPI, vol. 15(22), pages 1-20, November.
    6. Dmitriy N. Karamov & Pavel V. Ilyushin & Konstantin V. Suslov, 2022. "Electrification of Rural Remote Areas Using Renewable Energy Sources: Literature Review," Energies, MDPI, vol. 15(16), pages 1-13, August.
    7. Aleksandr Kulikov & Pavel Ilyushin & Konstantin Suslov & Sergey Filippov, 2023. "Estimating the Error of Fault Location on Overhead Power Lines by Emergency State Parameters Using an Analytical Technique," Energies, MDPI, vol. 16(3), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    2. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Kanwal, S. & Khan, B. & Ali, S.M. & Mehmood, C.A., 2018. "Gaussian process regression based inertia emulation and reserve estimation for grid interfaced photovoltaic system," Renewable Energy, Elsevier, vol. 126(C), pages 865-875.
    4. Henning Thiesen & Clemens Jauch, 2021. "Application of a New Dispatch Methodology to Identify the Influence of Inertia Supplying Wind Turbines on Day-Ahead Market Sales Volumes," Energies, MDPI, vol. 14(5), pages 1-19, February.
    5. Ratnam, Kamala Sarojini & Palanisamy, K. & Yang, Guangya, 2020. "Future low-inertia power systems: Requirements, issues, and solutions - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    6. Nouha Mansouri & Abderezak Lashab & Dezso Sera & Josep M. Guerrero & Adnen Cherif, 2019. "Large Photovoltaic Power Plants Integration: A Review of Challenges and Solutions," Energies, MDPI, vol. 12(19), pages 1-16, October.
    7. Henning Thiesen & Clemens Jauch, 2020. "Determining the Load Inertia Contribution from Different Power Consumer Groups," Energies, MDPI, vol. 13(7), pages 1-14, April.
    8. Luerssen, Christoph & Gandhi, Oktoviano & Reindl, Thomas & Sekhar, Chandra & Cheong, David, 2020. "Life cycle cost analysis (LCCA) of PV-powered cooling systems with thermal energy and battery storage for off-grid applications," Applied Energy, Elsevier, vol. 273(C).
    9. Alija Mujcinagic & Mirza Kusljugic & Emir Nukic, 2020. "Wind Inertial Response Based on the Center of Inertia Frequency of a Control Area," Energies, MDPI, vol. 13(23), pages 1-17, November.
    10. Sevdari, Kristian & Calearo, Lisa & Andersen, Peter Bach & Marinelli, Mattia, 2022. "Ancillary services and electric vehicles: An overview from charging clusters and chargers technology perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Colin Levis & Cathal O’Loughlin & Terence O’Donnell & Martin Hill, 2019. "An Enhanced Two-Stage Grid-Connected Linear Parameter Varying Photovoltaic System Model for Frequency Support Strategy Evaluation," Energies, MDPI, vol. 12(24), pages 1-26, December.
    12. Jishu Mary Gomez & Prabhakar Karthikeyan Shanmugam, 2022. "Flexible Power Point Tracking Using a Neural Network for Power Reserve Control in a Grid-Connected PV System," Energies, MDPI, vol. 15(21), pages 1-17, November.
    13. Federica Cucchiella & Idiano D’Adamo & Paolo Rosa, 2015. "Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets," Energies, MDPI, vol. 8(11), pages 1-16, November.
    14. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose-Ignacio Sarasua, 2020. "Hybrid Wind–PV Frequency Control Strategy under Variable Weather Conditions in Isolated Power Systems," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    15. Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
    16. Pablo González-Inostroza & Claudia Rahmann & Ricardo Álvarez & Jannik Haas & Wolfgang Nowak & Christian Rehtanz, 2021. "The Role of Fast Frequency Response of Energy Storage Systems and Renewables for Ensuring Frequency Stability in Future Low-Inertia Power Systems," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    17. Ntombenhle Mazibuko & Kayode T. Akindeji & Katleho Moloi, 2024. "A Review on the Impact of Transmission Line Compensation and RES Integration on Protection Schemes," Energies, MDPI, vol. 17(14), pages 1-29, July.
    18. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    20. Psiloglou, B.E. & Kambezidis, H.D. & Kaskaoutis, D.G. & Karagiannis, D. & Polo, J.M., 2020. "Comparison between MRM simulations, CAMS and PVGIS databases with measured solar radiation components at the Methoni station, Greece," Renewable Energy, Elsevier, vol. 146(C), pages 1372-1391.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5179-:d:619258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.