IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1552-d1057536.html
   My bibliography  Save this article

Estimating the Error of Fault Location on Overhead Power Lines by Emergency State Parameters Using an Analytical Technique

Author

Listed:
  • Aleksandr Kulikov

    (Department of Electroenergetics, Power Supply and Power Electronics, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 603950 Nizhny Novgorod, Russia)

  • Pavel Ilyushin

    (Department of Research on the Relationship between Energy and the Economy, Energy Research Institute of the Russian Academy of Sciences, 117186 Moscow, Russia)

  • Konstantin Suslov

    (Department of Hydropower and Renewable Energy, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia
    Department of Power Supply and Electrical Engineering, Irkutsk National Research Technical University, 664074 Irkutsk, Russia)

  • Sergey Filippov

    (Department of Research on the Relationship between Energy and the Economy, Energy Research Institute of the Russian Academy of Sciences, 117186 Moscow, Russia)

Abstract

Fault location on overhead power lines achieved with the highest possible accuracy can reduce the time to locate faults. This contributes to ensuring the stability of power systems, as well as the reliability of power supply to consumers. There are a number of known mathematical techniques based on different physical principles that are used in fault location on overhead power lines and whose errors vary. Fault location on overhead power lines uses techniques based on the estimation of emergency state parameters, which are referred to as distance-to-fault techniques and are widely used. They are employed in digital protection relay terminals and power-line fault locators. Factors that have a significant impact on the error of fault location on overhead power lines by emergency state parameters are design, manufacturing, and operation. The aim of this article is to analyze the existing techniques and to present a new analytical technique for estimating errors of fault location on overhead power lines by using emergency state parameters. The technique developed by the authors makes it possible to properly take into account a set of random factors, including various measurement errors of currents and voltages in the emergency state, which have a significant impact on the fault location on overhead power lines error. The technique allows one to determine more accurately the fault location and the size of the inspection area, which is necessary to reduce the time it takes to carry out emergency recovery operations. The proposed technique can be applied in fault locators and digital protection relay terminals that use both single-end, double- and multi-end sensing of currents and voltages in the emergency state.

Suggested Citation

  • Aleksandr Kulikov & Pavel Ilyushin & Konstantin Suslov & Sergey Filippov, 2023. "Estimating the Error of Fault Location on Overhead Power Lines by Emergency State Parameters Using an Analytical Technique," Energies, MDPI, vol. 16(3), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1552-:d:1057536
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1552/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1552/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghadi, Mojtaba Jabbari & Rajabi, Amin & Ghavidel, Sahand & Azizivahed, Ali & Li, Li & Zhang, Jiangfeng, 2019. "From active distribution systems to decentralized microgrids: A review on regulations and planning approaches based on operational factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Andrey Rylov & Pavel Ilyushin & Aleksandr Kulikov & Konstantin Suslov, 2021. "Testing Photovoltaic Power Plants for Participation in General Primary Frequency Control under Various Topology and Operating Conditions," Energies, MDPI, vol. 14(16), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantin Suslov & Andrey Kryukov & Pavel Ilyushin & Aleksander Cherepanov & Aleksander Kryukov, 2023. "Modeling the Effects of Electromagnetic Interference from Multi-Wire Traction Networks on Pipelines," Energies, MDPI, vol. 16(10), pages 1-25, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aleksandr Kulikov & Pavel Ilyushin & Anton Loskutov & Konstantin Suslov & Sergey Filippov, 2022. "WSPRT Methods for Improving Power System Automation Devices in the Conditions of Distributed Generation Sources Operation," Energies, MDPI, vol. 15(22), pages 1-20, November.
    2. Xuejun Zheng & Shaorong Wang & Zia Ullah & Mengmeng Xiao & Chang Ye & Zhangping Lei, 2021. "A Novel Optimization Method for a Multi-Year Planning Scheme of an Active Distribution Network in a Large Planning Zone," Energies, MDPI, vol. 14(12), pages 1-16, June.
    3. Ghadi, Mojtaba Jabbari & Azizivahed, Ali & Mishra, Dillip Kumar & Li, Li & Zhang, Jiangfeng & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Application of small-scale compressed air energy storage in the daily operation of an active distribution system," Energy, Elsevier, vol. 231(C).
    4. Hoicka, Christina E. & Lowitzsch, Jens & Brisbois, Marie Claire & Kumar, Ankit & Ramirez Camargo, Luis, 2021. "Implementing a just renewable energy transition: Policy advice for transposing the new European rules for renewable energy communities," Energy Policy, Elsevier, vol. 156(C).
    5. Máximo A. Domínguez-Garabitos & Víctor S. Ocaña-Guevara & Félix Santos-García & Adriana Arango-Manrique & Miguel Aybar-Mejía, 2022. "A Methodological Proposal for Implementing Demand-Shifting Strategies in the Wholesale Electricity Market," Energies, MDPI, vol. 15(4), pages 1-28, February.
    6. Huo, Da & Santos, Marcos & Sarantakos, Ilias & Resch, Markus & Wade, Neal & Greenwood, David, 2022. "A reliability-aware chance-constrained battery sizing method for island microgrid," Energy, Elsevier, vol. 251(C).
    7. Oh, Jinwoo & Park, Yunjae & Lee, Hoseong, 2022. "Development of a fully deterministic simulation model for organic Rankine cycle operating under off-design conditions," Applied Energy, Elsevier, vol. 307(C).
    8. Sandelic, Monika & Peyghami, Saeed & Sangwongwanich, Ariya & Blaabjerg, Frede, 2022. "Reliability aspects in microgrid design and planning: Status and power electronics-induced challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Wang, Y. & Rousis, A. Oulis & Strbac, G., 2022. "Resilience-driven optimal sizing and pre-positioning of mobile energy storage systems in decentralized networked microgrids," Applied Energy, Elsevier, vol. 305(C).
    10. Xie, Shiwei & Hu, Zhijian & Wang, Jueying, 2020. "Two-stage robust optimization for expansion planning of active distribution systems coupled with urban transportation networks," Applied Energy, Elsevier, vol. 261(C).
    11. Dmitriy N. Karamov & Pavel V. Ilyushin & Konstantin V. Suslov, 2022. "Electrification of Rural Remote Areas Using Renewable Energy Sources: Literature Review," Energies, MDPI, vol. 15(16), pages 1-13, August.
    12. Wei, Chun & Shen, Zhuzheng & Xiao, Dongliang & Wang, Licheng & Bai, Xiaoqing & Chen, Haoyong, 2021. "An optimal scheduling strategy for peer-to-peer trading in interconnected microgrids based on RO and Nash bargaining," Applied Energy, Elsevier, vol. 295(C).
    13. Wang, Dongxue & Fan, Ruguo & Xu, Xiaoxia & Du, Kang & Wang, Yitong & Dou, Xihao, 2024. "Hybrid game model for electricity trading and pricing among multiple microgrids and consumers based on demand-side complex networks," Energy, Elsevier, vol. 313(C).
    14. Iliya K. Iliev & Andrey V. Kryukov & Konstantin V. Suslov & Aleksandr V. Cherepanov & Nguyen Quoc Hieu & Ivan H. Beloev & Yuliya S. Valeeva, 2024. "Modeling the Operating Conditions of Electric Power Systems Feeding DC and AC Traction Substations," Energies, MDPI, vol. 17(18), pages 1-15, September.
    15. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Shahbazbegian, Vahid, 2020. "Innovative strategy to design a mixed resilient-sustainable electricity supply chain network under uncertainty," Applied Energy, Elsevier, vol. 280(C).
    16. Parizad, Ali & Hatziadoniu, Konstadinos, 2020. "Security/stability-based Pareto optimal solution for distribution networks planning implementing NSGAII/FDMT," Energy, Elsevier, vol. 192(C).
    17. Bekirsky, N. & Hoicka, C.E. & Brisbois, M.C. & Ramirez Camargo, L., 2022. "Many actors amongst multiple renewables: A systematic review of actor involvement in complementarity of renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Fabian Zuñiga-Cortes & Eduardo Caicedo-Bravo & Juan D. Garcia-Racines, 2023. "Reference Framework Based on a Two-Stage Strategy for Sizing and Operational Management in Electrical Microgrid Planning," Sustainability, MDPI, vol. 15(19), pages 1-27, October.
    19. Hao, Junhong & Feng, Xiaolong & Chen, Xiangru & Jin, Xilin & Wang, Xingce & Hao, Tong & Hong, Feng & Du, Xiaoze, 2024. "Optimal scheduling of active distribution network considering symmetric heat and power source-load spatial-temporal characteristics," Applied Energy, Elsevier, vol. 373(C).
    20. Natalia Bakhtadze & Evgeny Maximov & Natalia Maximova, 2021. "Digital Identification Algorithms for Primary Frequency Control in Unified Power System," Mathematics, MDPI, vol. 9(22), pages 1-17, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1552-:d:1057536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.