IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p7893-d951980.html
   My bibliography  Save this article

Parameters Identification of Proton Exchange Membrane Fuel Cell Model Based on the Lightning Search Algorithm

Author

Listed:
  • Banaja Mohanty

    (Department of Electrical Engineering, Veer Surendra Sai University of Technology (VSSUT), Burla 768018, India)

  • Rajvikram Madurai Elavarasan

    (School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia)

  • Hany M. Hasanien

    (Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt)

  • Elangovan Devaraj

    (TIFAC CORE and School of Electrical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India)

  • Rania A. Turky

    (Electrical Engineering Department, Faculty of Engineering and Technology, Future University in Egypt, Cairo 11835, Egypt)

  • Rishi Pugazhendhi

    (Research & Development Division (Power & Energy), Nestlives Private Limited, Chennai 600091, India)

Abstract

The fuel cell is vital in electrical distribution networks as a distributed generation in today’s world. A precise model of a fuel cell is extensively required as it rigorously affects the simulation studies’ transient and dynamic analyses of the fuel cell. This appears in several microgrids and smart grid systems. This paper introduces a novel attempt to optimally determine all unknown factors of the polymer exchange membrane (PEM) fuel cell model using a meta-heuristic algorithm termed the Lightning search algorithm (LSA). In this model, the current–voltage relationship is heavily nonlinear, including several unknown factors because of the shortage of fuel cell data from the manufacturer’s side. This issue can be treated as an optimization problem, and LSA is applied to detect its ability to solve this problem accurately. The objective function is the sum of the squared error between the estimated output voltage and the measured output voltage of the fuel cell. The constraints of the optimization problem involve the factors range (lower and upper limit). The LSA is utilized in minimizing the objective function. The effectiveness of the LSA-PEM fuel cell model is extensively verified using the simulation results performed under different operating conditions. The simulation results of the proposed model are compared with the measured results of three commercial fuel cells, such as Ballard Mark V 5 kW, BCS 500 W and Nedstack PS6 6 kW, to obtain a realistic study. The results of the proposed algorithm are also compared with different optimized models to validate the model and, further, to determine where LSA stands in terms of precision. In this regard, the proposed model can yield a lower SSE by more than 5% in some cases and high performance of the LSA-PEMFC model. With the results obtained, it can be concluded that LSA prevails as a potential optimization algorithm to develop a precise PEM fuel cell model.

Suggested Citation

  • Banaja Mohanty & Rajvikram Madurai Elavarasan & Hany M. Hasanien & Elangovan Devaraj & Rania A. Turky & Rishi Pugazhendhi, 2022. "Parameters Identification of Proton Exchange Membrane Fuel Cell Model Based on the Lightning Search Algorithm," Energies, MDPI, vol. 15(21), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7893-:d:951980
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/7893/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/7893/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gong, Wenyin & Yan, Xuesong & Liu, Xiaobo & Cai, Zhihua, 2015. "Parameter extraction of different fuel cell models with transferred adaptive differential evolution," Energy, Elsevier, vol. 86(C), pages 139-151.
    2. Chakraborty, Uday Kumar, 2009. "Static and dynamic modeling of solid oxide fuel cell using genetic programming," Energy, Elsevier, vol. 34(6), pages 740-751.
    3. Wei, Ya & Stanford, Russell J., 2019. "Parameter identification of solid oxide fuel cell by Chaotic Binary Shark Smell Optimization method," Energy, Elsevier, vol. 188(C).
    4. Ewelina Kochanek, 2022. "The Role of Hydrogen in the Visegrad Group Approach to Energy Transition," Energies, MDPI, vol. 15(19), pages 1-18, October.
    5. Papadopoulos, Panagiotis N. & Kandyla, Maria & Kourtza, Paraskevi & Papadopoulos, Theofilos A. & Papagiannis, Grigoris K., 2014. "Parametric analysis of the steady state and dynamic performance of proton exchange membrane fuel cell models," Renewable Energy, Elsevier, vol. 71(C), pages 23-31.
    6. Chakraborty, Uday K. & Abbott, Travis E. & Das, Sajal K., 2012. "PEM fuel cell modeling using differential evolution," Energy, Elsevier, vol. 40(1), pages 387-399.
    7. Bizon, Nicu, 2017. "Energy optimization of fuel cell system by using global extremum seeking algorithm," Applied Energy, Elsevier, vol. 206(C), pages 458-474.
    8. Fathy, Ahmed & Rezk, Hegazy, 2018. "Multi-verse optimizer for identifying the optimal parameters of PEMFC model," Energy, Elsevier, vol. 143(C), pages 634-644.
    9. Taner, Tolga, 2018. "Energy and exergy analyze of PEM fuel cell: A case study of modeling and simulations," Energy, Elsevier, vol. 143(C), pages 284-294.
    10. Patrick Moriarty & Damon Honnery, 2022. "Renewable Energy and Energy Reductions or Solar Geoengineering for Climate Change Mitigation?," Energies, MDPI, vol. 15(19), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Hay, E.A. & El-Hameed, M.A. & El-Fergany, A.A., 2019. "Optimized Parameters of SOFC for steady state and transient simulations using interior search algorithm," Energy, Elsevier, vol. 166(C), pages 451-461.
    2. Gouda, Eid A. & Kotb, Mohamed F. & El-Fergany, Attia A., 2021. "Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models: Steady-state performance and analysis," Energy, Elsevier, vol. 221(C).
    3. Fathy, Ahmed & Rezk, Hegazy, 2022. "Political optimizer based approach for estimating SOFC optimal parameters for static and dynamic models," Energy, Elsevier, vol. 238(PC).
    4. Fathy, Ahmed & Babu, Thanikanti Sudhakar & Abdelkareem, Mohammad Ali & Rezk, Hegazy & Yousri, Dalia, 2022. "Recent approach based heterogeneous comprehensive learning Archimedes optimization algorithm for identifying the optimal parameters of different fuel cells," Energy, Elsevier, vol. 248(C).
    5. Xu, Shuhui & Wang, Yong & Wang, Zhi, 2019. "Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method," Energy, Elsevier, vol. 173(C), pages 457-467.
    6. Priya, K. & Sathishkumar, K. & Rajasekar, N., 2018. "A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 121-144.
    7. Kandidayeni, M. & Macias, A. & Khalatbarisoltani, A. & Boulon, L. & Kelouwani, S., 2019. "Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms," Energy, Elsevier, vol. 183(C), pages 912-925.
    8. Yang, Bo & Guo, Zhengxun & Yang, Yi & Chen, Yijun & Zhang, Rui & Su, Keyi & Shu, Hongchun & Yu, Tao & Zhang, Xiaoshun, 2021. "Extreme learning machine based meta-heuristic algorithms for parameter extraction of solid oxide fuel cells," Applied Energy, Elsevier, vol. 303(C).
    9. Walter Zamboni & Giovanni Petrone & Giovanni Spagnuolo & Davide Beretta, 2019. "An Evolutionary Computation Approach for the Online/On-Board Identification of PEM Fuel Cell Impedance Parameters with A Diagnostic Perspective," Energies, MDPI, vol. 12(22), pages 1-19, November.
    10. Ahmed M. Agwa & Attia A. El-Fergany & Gamal M. Sarhan, 2019. "Steady-State Modeling of Fuel Cells Based on Atom Search Optimizer," Energies, MDPI, vol. 12(10), pages 1-14, May.
    11. Fathy, Ahmed & Elaziz, Mohamed Abd & Alharbi, Abdullah G., 2020. "A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell," Renewable Energy, Elsevier, vol. 146(C), pages 1833-1845.
    12. Uday K. Chakraborty, 2019. "Proton Exchange Membrane Fuel Cell Stack Design Optimization Using an Improved Jaya Algorithm," Energies, MDPI, vol. 12(16), pages 1-26, August.
    13. Uday K. Chakraborty, 2018. "Reversible and Irreversible Potentials and an Inaccuracy in Popular Models in the Fuel Cell Literature," Energies, MDPI, vol. 11(7), pages 1-11, July.
    14. Henry Miniguano & Andrés Barrado & Cristina Fernández & Pablo Zumel & Antonio Lázaro, 2019. "A General Parameter Identification Procedure Used for the Comparative Study of Supercapacitors Models," Energies, MDPI, vol. 12(9), pages 1-20, May.
    15. Frangopoulos, Christos A., 2018. "Recent developments and trends in optimization of energy systems," Energy, Elsevier, vol. 164(C), pages 1011-1020.
    16. Puja Bhatt & Neha Agarwal & Uday K. Chakraborty, 2016. "Parameter Optimization of PEMFC with Genetic Algorithm," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 241-249, November.
    17. Miao, Di & Chen, Wei & Zhao, Wei & Demsas, Tekle, 2020. "Parameter estimation of PEM fuel cells employing the hybrid grey wolf optimization method," Energy, Elsevier, vol. 193(C).
    18. Seleem, Sameh I. & Hasanien, Hany M. & El-Fergany, Attia A., 2021. "Equilibrium optimizer for parameter extraction of a fuel cell dynamic model," Renewable Energy, Elsevier, vol. 169(C), pages 117-128.
    19. Samuel Raafat Fahim & Hany M. Hasanien & Rania A. Turky & Abdulaziz Alkuhayli & Abdullrahman A. Al-Shamma’a & Abdullah M. Noman & Marcos Tostado-Véliz & Francisco Jurado, 2021. "Parameter Identification of Proton Exchange Membrane Fuel Cell Based on Hunger Games Search Algorithm," Energies, MDPI, vol. 14(16), pages 1-21, August.
    20. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7893-:d:951980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.