IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p2917-d1414228.html
   My bibliography  Save this article

An Accurate Parameter Estimation Method of the Voltage Model for Proton Exchange Membrane Fuel Cells

Author

Listed:
  • Jian Mei

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China
    Suzhou Research Institute, Harbin Institute of Technology, Suzhou 215104, China)

  • Xuan Meng

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China
    Suzhou Research Institute, Harbin Institute of Technology, Suzhou 215104, China)

  • Xingwang Tang

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Heran Li

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China
    Suzhou Research Institute, Harbin Institute of Technology, Suzhou 215104, China)

  • Hany Hasanien

    (Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt
    Faculty of Engineering and Technology, Future University in Egypt, Cairo 11835, Egypt)

  • Mohammed Alharbi

    (Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Zhen Dong

    (Suzhou SEEEx (Sustainable Electrical Energy Expert) Technology Company, Suzhou 215000, China)

  • Jiabin Shen

    (General Motors Canada Company, Oshawa, ON L1J 0C5, Canada)

  • Chuanyu Sun

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China
    Suzhou Research Institute, Harbin Institute of Technology, Suzhou 215104, China)

  • Fulin Fan

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Jinhai Jiang

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China
    Suzhou Research Institute, Harbin Institute of Technology, Suzhou 215104, China)

  • Kai Song

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China
    Suzhou Research Institute, Harbin Institute of Technology, Suzhou 215104, China)

Abstract

Accurate and reliable mathematical modeling is essential for the optimal control and performance analysis of polymer electrolyte membrane fuel cell (PEMFC) systems, which are mainly implemented based on accurate parameter estimation. In this paper, a multi-strategy tuna swarm optimization (MS-TSO) is proposed to estimate the parameters of PEMFC voltage models and compare them with other optimizers such as differential evolution, the whale optimization approach, the salp swarm algorithm, particle swarm optimization, Harris hawk optimization and the slime mould algorithm. In the optimizing routine, the unidentified factors of the PEMFCs are used as the decision variables, which are optimized to minimize the sum of square errors between the estimated and measured data. The optimizers are examined based on three PEMFC datasets including BCS500W, NedStackPS6 and harizon500W as well as a set of experimental data which are measured using the Greenlight G20 platform with a 25 cm 2 single cell at 353 K. It is confirmed that MS-TSO gives better performance in terms of convergence speed and accuracy than the competing algorithms. Furthermore, the results achieved by MS-TSO are compared with other reported approaches in the literature. The advantages of MS-TSO in ascertaining the optimum factors of various PEMFCs have been comprehensively demonstrated.

Suggested Citation

  • Jian Mei & Xuan Meng & Xingwang Tang & Heran Li & Hany Hasanien & Mohammed Alharbi & Zhen Dong & Jiabin Shen & Chuanyu Sun & Fulin Fan & Jinhai Jiang & Kai Song, 2024. "An Accurate Parameter Estimation Method of the Voltage Model for Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 17(12), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2917-:d:1414228
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/2917/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/2917/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hegazy Rezk & Tabbi Wilberforce & A. G. Olabi & Rania M. Ghoniem & Enas Taha Sayed & Mohammad Ali Abdelkareem, 2023. "Optimal Parameter Identification of a PEM Fuel Cell Using Recent Optimization Algorithms," Energies, MDPI, vol. 16(14), pages 1-20, July.
    2. Ali, M. & El-Hameed, M.A. & Farahat, M.A., 2017. "Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer," Renewable Energy, Elsevier, vol. 111(C), pages 455-462.
    3. Kui Jiao & Jin Xuan & Qing Du & Zhiming Bao & Biao Xie & Bowen Wang & Yan Zhao & Linhao Fan & Huizhi Wang & Zhongjun Hou & Sen Huo & Nigel P. Brandon & Yan Yin & Michael D. Guiver, 2021. "Designing the next generation of proton-exchange membrane fuel cells," Nature, Nature, vol. 595(7867), pages 361-369, July.
    4. Andrew J. Riad & Hany M. Hasanien & Rania A. Turky & Ahmed H. Yakout, 2023. "Identifying the PEM Fuel Cell Parameters Using Artificial Rabbits Optimization Algorithm," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    5. Abdul Ghani Olabi & Hegazy Rezk & Mohammad Ali Abdelkareem & Tabbi Awotwe & Hussein M. Maghrabie & Fatahallah Freig Selim & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Alaa A. Zaky, 2023. "Optimal Parameter Identification of Perovskite Solar Cells Using Modified Bald Eagle Search Optimization Algorithm," Energies, MDPI, vol. 16(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangdong Wang & Zerong Huang & Daxing Zhang & Haoyu Yuan & Bingzi Cai & Hanlin Liu & Chunsheng Wang & Yuan Cao & Xinyao Zhou & Yaolin Dong, 2024. "Dynamic Prediction of Proton-Exchange Membrane Fuel Cell Degradation Based on Gated Recurrent Unit and Grey Wolf Optimization," Energies, MDPI, vol. 17(23), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alaa A. Zaky & Rania M. Ghoniem & F. Selim, 2023. "Precise Modeling of Proton Exchange Membrane Fuel Cell Using the Modified Bald Eagle Optimization Algorithm," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    2. Hassan Ali, Hossam & Fathy, Ahmed, 2024. "Reliable exponential distribution optimizer-based methodology for modeling proton exchange membrane fuel cells at different conditions," Energy, Elsevier, vol. 292(C).
    3. Yang, Fan & Li, Yuehua & Chen, Dongfang & Hu, Song & Xu, Xiaoming, 2024. "Parameter identification of PEMFC steady-state model based on p-dimensional extremum seeking via simplex tuning optimization method," Energy, Elsevier, vol. 292(C).
    4. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Xiong, Mu & Ye, Yuntao & Yang, Xi, 2023. "Three-dimensional multi-phase simulation of proton exchange membrane fuel cell performance considering constriction straight channel," Energy, Elsevier, vol. 267(C).
    5. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    6. Zhang, Xin & Li, Jingwen & Xiong, Yi & Ang, Yee Sin, 2022. "Efficient harvesting of low-grade waste heat from proton exchange membrane fuel cells via thermoradiative power devices," Energy, Elsevier, vol. 258(C).
    7. Lu, Guolong & Fan, Wenxuan & Lu, Dafeng & Zhao, Taotao & Wu, Qianqian & Liu, Mingxin & Liu, Zhenning, 2024. "Lung-inspired hybrid flow field to enhance PEMFC performance: A case of dual optimization by response surface and artificial intelligence," Applied Energy, Elsevier, vol. 355(C).
    8. Yunjie Yang & Minli Bai & Laisuo Su & Jizu Lv & Chengzhi Hu & Linsong Gao & Yang Li & Yubai Li & Yongchen Song, 2022. "One-Dimensional Numerical Simulation of Pt-Co Alloy Catalyst Aging for Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    9. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    10. Venkatesan, Suriya & Mitzel, Jens & Wegner, Karsten & Costa, Remi & Gazdzicki, Pawel & Friedrich, Kaspar Andreas, 2022. "Nanomaterials and films for polymer electrolyte membrane fuel cells and solid oxide cells by flame spray pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Wang, Mingkai & Pei, Pucheng & Xu, Yiming & Fan, Tengbo & Ren, Peng & Zhu, Zijing & Chen, Dongfang & Fu, Xi & Song, Xin & Wang, He, 2024. "CO-tolerance behaviors of proton exchange membrane fuel cell stacks with impure hydrogen fuel," Applied Energy, Elsevier, vol. 366(C).
    12. Su, Chao & Chen, Zhidong & Wu, Zexuan & Zhang, Jing & Li, Kaiyang & Hao, Junhong & Kong, Yanqiang & Zhang, Naiqiang, 2024. "Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 357(C).
    13. Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).
    14. Chen, Zhijie & Zuo, Wei & Zhou, Kun & Li, Qingqing & Huang, Yuhan & E, Jiaqiang, 2023. "Multi-factor impact mechanism on the performance of high temperature proton exchange membrane fuel cell," Energy, Elsevier, vol. 278(PB).
    15. Tao, Jianjian & Zhang, Yihan & Wei, Xuezhe & Jiang, Shangfeng & Dai, Haifeng, 2024. "Optimization of fast cold start strategy for PEM fuel cell stack," Applied Energy, Elsevier, vol. 362(C).
    16. Chen, Fujun & Wang, Bowen & Ni, Meng & Gong, Zhichao & Jiao, Kui, 2024. "Online energy management strategy for ammonia-hydrogen hybrid electric vehicles harnessing deep reinforcement learning," Energy, Elsevier, vol. 301(C).
    17. Förster, Robert & Kaiser, Matthias & Wenninger, Simon, 2023. "Future vehicle energy supply - sustainable design and operation of hybrid hydrogen and electric microgrids," Applied Energy, Elsevier, vol. 334(C).
    18. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    19. Xu, Shuhui & Wang, Yong & Wang, Zhi, 2019. "Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method," Energy, Elsevier, vol. 173(C), pages 457-467.
    20. Nawal Rai & Amel Abbadi & Fethia Hamidia & Nadia Douifi & Bdereddin Abdul Samad & Khalid Yahya, 2023. "Biogeography-Based Teaching Learning-Based Optimization Algorithm for Identifying One-Diode, Two-Diode and Three-Diode Models of Photovoltaic Cell and Module," Mathematics, MDPI, vol. 11(8), pages 1-30, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2917-:d:1414228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.