IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v216y2025ics136403212500276x.html
   My bibliography  Save this article

An efficient framework for proton exchange membrane fuel cell parameter estimation using numerous MH algorithms

Author

Listed:
  • Rathod, Asmita Ajay
  • Sharma, Pankaj
  • Choudhary, Arun
  • Raju, Saravanakumar
  • Subramanian, Balaji

Abstract

Proton Exchange Membrane Fuel Cells (PEMFCs) are essential for the progress of environmentally friendly hydrogen automobiles. Due to their ability to transform hydrogen into power, they are very promising alternatives for replacing traditional engines. Fuel cell (FC) systems have a complex and non-linear structure. Therefore, it is essential to accurately model the system for the purpose of simulation, design, as well as analysis. The primary aim of this paper is to provide a better meta-heuristic (MH) algorithm for estimating the values of unknown variables in the PEMFC model. In this paper, 25 state of art MH algorithms are utilized to calculate the unknown parameters of the PEMFC stacks (Ballard Mark V, BCS 500 W, Stack 250 W, NedStack PS6, Horizon H-12 as well as Temasek stack). The objective is to minimize the sum of square error (SSE) between the estimated data obtained using the MH algorithms and the actual data. Also, the obtained results are compared with each other to validate their effectiveness. Furthermore, qualitative assessments such as statistical, convergence characteristics, box plots, correlation, and radar chart analysis are carried out to evaluate the effectiveness of the 25 state-of-the-art MH algorithms. Additionally, the (I-V and I-P) polarization curves obtained from the applied 25 MH algorithms exactly match the manufacturing polarization curves across all case study outcomes. The findings enhance the understanding of the MH algorithms and offer significant insights for the effective design of PEMFC.

Suggested Citation

  • Rathod, Asmita Ajay & Sharma, Pankaj & Choudhary, Arun & Raju, Saravanakumar & Subramanian, Balaji, 2025. "An efficient framework for proton exchange membrane fuel cell parameter estimation using numerous MH algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:rensus:v:216:y:2025:i:c:s136403212500276x
    DOI: 10.1016/j.rser.2025.115603
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212500276X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115603?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hsieh, Chuang-Yu & Pei, Pucheng & Bai, Qiang & Su, Ay & Weng, Fang-Bor & Lee, Chi-Yuan, 2021. "Results of a 200 hours lifetime test of a 7 kW Hybrid–Power fuel cell system on electric forklifts," Energy, Elsevier, vol. 214(C).
    2. Rezk, Hegazy & Olabi, A.G. & Ferahtia, Seydali & Sayed, Enas Taha, 2022. "Accurate parameter estimation methodology applied to model proton exchange membrane fuel cell," Energy, Elsevier, vol. 255(C).
    3. Gouda, Eid A. & Kotb, Mohamed F. & El-Fergany, Attia A., 2021. "Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models: Steady-state performance and analysis," Energy, Elsevier, vol. 221(C).
    4. Fathy, Ahmed & Elaziz, Mohamed Abd & Alharbi, Abdullah G., 2020. "A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell," Renewable Energy, Elsevier, vol. 146(C), pages 1833-1845.
    5. Yang, Bo & Li, Danyang & Zeng, Chunyuan & Chen, Yijun & Guo, Zhengxun & Wang, Jingbo & Shu, Hongchun & Yu, Tao & Zhu, Jiawei, 2021. "Parameter extraction of PEMFC via Bayesian regularization neural network based meta-heuristic algorithms," Energy, Elsevier, vol. 228(C).
    6. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Banaja Mohanty & Rajvikram Madurai Elavarasan & Hany M. Hasanien & Elangovan Devaraj & Rania A. Turky & Rishi Pugazhendhi, 2022. "Parameters Identification of Proton Exchange Membrane Fuel Cell Model Based on the Lightning Search Algorithm," Energies, MDPI, vol. 15(21), pages 1-19, October.
    8. Andrew J. Riad & Hany M. Hasanien & Rania A. Turky & Ahmed H. Yakout, 2023. "Identifying the PEM Fuel Cell Parameters Using Artificial Rabbits Optimization Algorithm," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    9. Yang, Bo & Liang, Boxiao & Qian, Yucun & Zheng, Ruyi & Su, Shi & Guo, Zhengxun & Jiang, Lin, 2024. "Parameter identification of PEMFC via feedforward neural network-pelican optimization algorithm," Applied Energy, Elsevier, vol. 361(C).
    10. En-Jui Liu & Yi-Hsuan Hung & Che-Wun Hong, 2021. "Improved Metaheuristic Optimization Algorithm Applied to Hydrogen Fuel Cell and Photovoltaic Cell Parameter Extraction," Energies, MDPI, vol. 14(3), pages 1-16, January.
    11. Zhang, Bo & Wang, Rongjie & Jiang, Desong & Wang, Yichun & lin, Anhui & Wang, Jianfeng & Ruan, Bingcong, 2023. "Parameter identification of proton exchange membrane fuel cell based on swarm intelligence algorithm," Energy, Elsevier, vol. 283(C).
    12. Wilberforce, Tabbi & Rezk, Hegazy & Olabi, A.G. & Epelle, Emmanuel I. & Abdelkareem, Mohammad Ali, 2023. "Comparative analysis on parametric estimation of a PEM fuel cell using metaheuristics algorithms," Energy, Elsevier, vol. 262(PB).
    13. Rathod, Asmita Ajay & S., Balaji, 2024. "Optimization of stand-alone hybrid renewable energy system based on techno-socio-enviro-financial perspective using improved red-tailed hawk algorithm," Applied Energy, Elsevier, vol. 376(PA).
    14. Hasanien, Hany M. & Shaheen, Mohamed A.M. & Turky, Rania A. & Qais, Mohammed H. & Alghuwainem, Saad & Kamel, Salah & Tostado-Véliz, Marcos & Jurado, Francisco, 2022. "Precise modeling of PEM fuel cell using a novel Enhanced Transient Search Optimization algorithm," Energy, Elsevier, vol. 247(C).
    15. Sun, Zhe & Sun, Junlong & Xie, Xiangpeng & An, Zongquan & Hong, Yiwei & Sun, Zhixin, 2025. "Multi-population mutative moth-flame optimization algorithm for modeling and the identification of PEMFC parameters," Renewable Energy, Elsevier, vol. 240(C).
    16. Fathy, Ahmed & Rezk, Hegazy, 2018. "Multi-verse optimizer for identifying the optimal parameters of PEMFC model," Energy, Elsevier, vol. 143(C), pages 634-644.
    17. Yang, Zixuan & Liu, Qian & Zhang, Leiyu & Dai, Jialei & Razmjooy, Navid, 2020. "Model parameter estimation of the PEMFCs using improved Barnacles Mating Optimization algorithm," Energy, Elsevier, vol. 212(C).
    18. Ayyarao, Tummala.S.L.V. & Polumahanthi, Nishanth & Khan, Baseem, 2024. "An accurate parameter estimation of PEM fuel cell using war strategy optimization," Energy, Elsevier, vol. 290(C).
    19. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan Ali, Hossam & Fathy, Ahmed, 2024. "Reliable exponential distribution optimizer-based methodology for modeling proton exchange membrane fuel cells at different conditions," Energy, Elsevier, vol. 292(C).
    2. Fathy, Ahmed & Rezk, Hegazy & Alharbi, Abdullah G. & Yousri, Dalia, 2023. "Proton exchange membrane fuel cell model parameters identification using Chaotically based-bonobo optimizer," Energy, Elsevier, vol. 268(C).
    3. Alaa A. Zaky & Rania M. Ghoniem & F. Selim, 2023. "Precise Modeling of Proton Exchange Membrane Fuel Cell Using the Modified Bald Eagle Optimization Algorithm," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    4. Abdel-Basset, Mohamed & Mohamed, Reda & Abouhawwash, Mohamed, 2023. "On the facile and accurate determination of the highly accurate recent methods to optimize the parameters of different fuel cells: Simulations and analysis," Energy, Elsevier, vol. 272(C).
    5. Wilberforce, Tabbi & Rezk, Hegazy & Olabi, A.G. & Epelle, Emmanuel I. & Abdelkareem, Mohammad Ali, 2023. "Comparative analysis on parametric estimation of a PEM fuel cell using metaheuristics algorithms," Energy, Elsevier, vol. 262(PB).
    6. Yang, Fan & Li, Yuehua & Chen, Dongfang & Hu, Song & Xu, Xiaoming, 2024. "Parameter identification of PEMFC steady-state model based on p-dimensional extremum seeking via simplex tuning optimization method," Energy, Elsevier, vol. 292(C).
    7. Fathy, Ahmed & Babu, Thanikanti Sudhakar & Abdelkareem, Mohammad Ali & Rezk, Hegazy & Yousri, Dalia, 2022. "Recent approach based heterogeneous comprehensive learning Archimedes optimization algorithm for identifying the optimal parameters of different fuel cells," Energy, Elsevier, vol. 248(C).
    8. Hegazy Rezk & Tabbi Wilberforce & A. G. Olabi & Rania M. Ghoniem & Enas Taha Sayed & Mohammad Ali Abdelkareem, 2023. "Optimal Parameter Identification of a PEM Fuel Cell Using Recent Optimization Algorithms," Energies, MDPI, vol. 16(14), pages 1-20, July.
    9. Ćalasan, Martin & Micev, Mihailo & Hasanien, Hany M. & Abdel Aleem, Shady H.E., 2024. "PEM fuel cells: Two novel approaches for mathematical modeling and parameter estimation," Energy, Elsevier, vol. 290(C).
    10. Rezk, Hegazy & Olabi, A.G. & Ferahtia, Seydali & Sayed, Enas Taha, 2022. "Accurate parameter estimation methodology applied to model proton exchange membrane fuel cell," Energy, Elsevier, vol. 255(C).
    11. kanouni, Badreddine & Laib, Abdelbaset & Necaibia, Salah & Krama, Abdelbasset & Guerrero, Josep M., 2025. "Pied kingfisher optimizer for accurate parameter extraction in proton exchange membrane fuel cell," Energy, Elsevier, vol. 325(C).
    12. Yang, Zirong & Jiao, Kui & Wu, Kangcheng & Shi, Weilong & Jiang, Shangfeng & Zhang, Longhai & Du, Qing, 2021. "Numerical investigations of assisted heating cold start strategies for proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 222(C).
    13. Yuan, Yongliang & Yang, Qingkang & Ren, Jianji & Mu, Xiaokai & Wang, Zhenxi & Shen, Qianlong & Zhao, Wu, 2024. "Attack-defense strategy assisted osprey optimization algorithm for PEMFC parameters identification," Renewable Energy, Elsevier, vol. 225(C).
    14. Andrew J. Riad & Hany M. Hasanien & Rania A. Turky & Ahmed H. Yakout, 2023. "Identifying the PEM Fuel Cell Parameters Using Artificial Rabbits Optimization Algorithm," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    15. Gouda, Eid A. & Kotb, Mohamed F. & El-Fergany, Attia A., 2021. "Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models: Steady-state performance and analysis," Energy, Elsevier, vol. 221(C).
    16. Zhang, Bo & Wang, Rongjie & Jiang, Desong & Wang, Yichun & lin, Anhui & Wang, Jianfeng & Ruan, Bingcong, 2023. "Parameter identification of proton exchange membrane fuel cell based on swarm intelligence algorithm," Energy, Elsevier, vol. 283(C).
    17. Rezk, Hegazy & Ferahtia, Seydali & Djeroui, Ali & Chouder, Aissa & Houari, Azeddine & Machmoum, Mohamed & Abdelkareem, Mohammad Ali, 2022. "Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer," Energy, Elsevier, vol. 239(PC).
    18. Yang, Bo & Liang, Boxiao & Qian, Yucun & Zheng, Ruyi & Su, Shi & Guo, Zhengxun & Jiang, Lin, 2024. "Parameter identification of PEMFC via feedforward neural network-pelican optimization algorithm," Applied Energy, Elsevier, vol. 361(C).
    19. Hasanien, Hany M. & Shaheen, Mohamed A.M. & Turky, Rania A. & Qais, Mohammed H. & Alghuwainem, Saad & Kamel, Salah & Tostado-Véliz, Marcos & Jurado, Francisco, 2022. "Precise modeling of PEM fuel cell using a novel Enhanced Transient Search Optimization algorithm," Energy, Elsevier, vol. 247(C).
    20. Guarino, Antonio & Trinchero, Riccardo & Canavero, Flavio & Spagnuolo, Giovanni, 2022. "A fast fuel cell parametric identification approach based on machine learning inverse models," Energy, Elsevier, vol. 239(PC).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:216:y:2025:i:c:s136403212500276x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.