IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipcs0360544221023884.html
   My bibliography  Save this article

A fast fuel cell parametric identification approach based on machine learning inverse models

Author

Listed:
  • Guarino, Antonio
  • Trinchero, Riccardo
  • Canavero, Flavio
  • Spagnuolo, Giovanni

Abstract

In this paper a computationally efficient optimization approach to the parametric identification of a fuel cell equivalent circuit model is presented. It is based on the inverse model and on machine learning regressions. During the training phase, the inverse model is built numerically by means of advanced regression approaches, i.e., the support vector machine regression, the least squares support vector machine regression and the Gaussian process regression. The training set is synthetically generated to the aim of exploring the parameter space and to characterize different stack operating conditions, including normal and faulty ones. The accuracy of the considered approaches is investigated by employing a test set including many experimental data, consisting of impedance spectra measured through the electrochemical impedance spectroscopy and referring to very different stack operating conditions. The results show that all the considered machine learning methods allow to identify the parameters of the fuel cell model with a low computational burden, so that they fit with the hardware resources of low cost embedded processors. This feature allows to envisage that the proposed approaches are good candidates for a model-based on-line diagnosis of fuel cell stacks.

Suggested Citation

  • Guarino, Antonio & Trinchero, Riccardo & Canavero, Flavio & Spagnuolo, Giovanni, 2022. "A fast fuel cell parametric identification approach based on machine learning inverse models," Energy, Elsevier, vol. 239(PC).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221023884
    DOI: 10.1016/j.energy.2021.122140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221023884
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Meng & Hu, Tao & Wu, Lifeng & Kang, Guoqing & Guan, Yong, 2021. "A method for capacity estimation of lithium-ion batteries based on adaptive time-shifting broad learning system," Energy, Elsevier, vol. 231(C).
    2. Ma, Rui & Yang, Tao & Breaz, Elena & Li, Zhongliang & Briois, Pascal & Gao, Fei, 2018. "Data-driven proton exchange membrane fuel cell degradation predication through deep learning method," Applied Energy, Elsevier, vol. 231(C), pages 102-115.
    3. Zhang, Zehan & Li, Shuanghong & Xiao, Yawen & Yang, Yupu, 2019. "Intelligent simultaneous fault diagnosis for solid oxide fuel cell system based on deep learning," Applied Energy, Elsevier, vol. 233, pages 930-942.
    4. Fei, Zicheng & Yang, Fangfang & Tsui, Kwok-Leung & Li, Lishuai & Zhang, Zijun, 2021. "Early prediction of battery lifetime via a machine learning based framework," Energy, Elsevier, vol. 225(C).
    5. Walter Zamboni & Giovanni Petrone & Giovanni Spagnuolo & Davide Beretta, 2019. "An Evolutionary Computation Approach for the Online/On-Board Identification of PEM Fuel Cell Impedance Parameters with A Diagnostic Perspective," Energies, MDPI, vol. 12(22), pages 1-19, November.
    6. Petrone, Giovanni & Zamboni, Walter & Spagnuolo, Giovanni, 2019. "An interval arithmetic-based method for parametric identification of a fuel cell equivalent circuit model," Applied Energy, Elsevier, vol. 242(C), pages 1226-1236.
    7. Chen, Zewang & Shi, Na & Ji, Yufan & Niu, Mu & Wang, Youren, 2021. "Lithium-ion batteries remaining useful life prediction based on BLS-RVM," Energy, Elsevier, vol. 234(C).
    8. Sun, Zhe & Cao, Dan & Ling, Yawen & Xiang, Feng & Sun, Zhixin & Wu, Fan, 2021. "Proton exchange membrane fuel cell model parameter identification based on dynamic differential evolution with collective guidance factor algorithm," Energy, Elsevier, vol. 216(C).
    9. Gouda, Eid A. & Kotb, Mohamed F. & El-Fergany, Attia A., 2021. "Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models: Steady-state performance and analysis," Energy, Elsevier, vol. 221(C).
    10. Tanveer, Waqas Hassan & Rezk, Hegazy & Nassef, Ahmed & Abdelkareem, Mohammad Ali & Kolosz, Ben & Karuppasamy, K. & Aslam, Jawad & Gilani, Syed Omer, 2020. "Improving fuel cell performance via optimal parameters identification through fuzzy logic based-modeling and optimization," Energy, Elsevier, vol. 204(C).
    11. Son, Seho & Jeong, Siheon & Kwak, Eunji & Kim, Jun-hyeong & Oh, Ki-Yong, 2022. "Integrated framework for SOH estimation of lithium-ion batteries using multiphysics features," Energy, Elsevier, vol. 238(PA).
    12. K. V. S. Bharath & Frede Blaabjerg & Ahteshamul Haque & Mohammed Ali Khan, 2020. "Model-Based Data Driven Approach for Fault Identification in Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 13(12), pages 1-18, June.
    13. Behzad Najafi & Paolo Bonomi & Andrea Casalegno & Fabio Rinaldi & Andrea Baricci, 2020. "Rapid Fault Diagnosis of PEM Fuel Cells through Optimal Electrochemical Impedance Spectroscopy Tests," Energies, MDPI, vol. 13(14), pages 1-19, July.
    14. Liu, Hao & Chen, Jian & Hissel, Daniel & Su, Hongye, 2019. "Remaining useful life estimation for proton exchange membrane fuel cells using a hybrid method," Applied Energy, Elsevier, vol. 237(C), pages 910-919.
    15. Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2019. "Degradation model of proton exchange membrane fuel cell based on a novel hybrid method," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Qian, Cheng & Xu, Binghui & Chang, Liang & Sun, Bo & Feng, Qiang & Yang, Dezhen & Ren, Yi & Wang, Zili, 2021. "Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries," Energy, Elsevier, vol. 227(C).
    17. Yang, Zixuan & Liu, Qian & Zhang, Leiyu & Dai, Jialei & Razmjooy, Navid, 2020. "Model parameter estimation of the PEMFCs using improved Barnacles Mating Optimization algorithm," Energy, Elsevier, vol. 212(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Domitr, Paweł & Włostowski, Mateusz & Laskowski, Rafał & Jurkowski, Romuald, 2023. "Comparison of inverse uncertainty quantification methods for critical flow test," Energy, Elsevier, vol. 263(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Zhihua & Chan, Siew Hwa & Chen, Qihong & Liu, Hao & Zhang, Liyan & Zhou, Keliang & Tong, Sirui & Fu, Zhichao, 2023. "Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system," Applied Energy, Elsevier, vol. 331(C).
    2. Chen, Kui & Badji, Abderrezak & Laghrouche, Salah & Djerdir, Abdesslem, 2022. "Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm," Applied Energy, Elsevier, vol. 318(C).
    3. Zuo, Jian & Lv, Hong & Zhou, Daming & Xue, Qiong & Jin, Liming & Zhou, Wei & Yang, Daijun & Zhang, Cunman, 2021. "Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application," Applied Energy, Elsevier, vol. 281(C).
    4. Deng, Zhihua & Chen, Qihong & Zhang, Liyan & Zong, Yi & Zhou, Keliang & Fu, Zhichao, 2020. "Control oriented data driven linear parameter varying model for proton exchange membrane fuel cell systems," Applied Energy, Elsevier, vol. 277(C).
    5. Liu, Hao & Chen, Jian & Hissel, Daniel & Lu, Jianguo & Hou, Ming & Shao, Zhigang, 2020. "Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    6. Aihua Tang & Yuanhang Yang & Quanqing Yu & Zhigang Zhang & Lin Yang, 2022. "A Review of Life Prediction Methods for PEMFCs in Electric Vehicles," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    7. Liu, Ze & Xu, Sichuan & Zhao, Honghui & Wang, Yupeng, 2022. "Durability estimation and short-term voltage degradation forecasting of vehicle PEMFC system: Development and evaluation of machine learning models," Applied Energy, Elsevier, vol. 326(C).
    8. Rezk, Hegazy & Olabi, A.G. & Ferahtia, Seydali & Sayed, Enas Taha, 2022. "Accurate parameter estimation methodology applied to model proton exchange membrane fuel cell," Energy, Elsevier, vol. 255(C).
    9. Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2019. "Degradation model of proton exchange membrane fuel cell based on a novel hybrid method," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    10. Xu, Yuan-wu & Wu, Xiao-long & Zhong, Xiao-bo & Zhao, Dong-qi & Sorrentino, Marco & Jiang, Jianhua & Jiang, Chang & Fu, Xiaowei & Li, Xi, 2021. "Mechanism model-based and data-driven approach for the diagnosis of solid oxide fuel cell stack leakage," Applied Energy, Elsevier, vol. 286(C).
    11. Wang, Chu & Li, Zhongliang & Outbib, Rachid & Dou, Manfeng & Zhao, Dongdong, 2022. "Symbolic deep learning based prognostics for dynamic operating proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 305(C).
    12. Li, Haolong & Chen, Qihong & Zhang, Liyan & Liu, Li & Xiao, Peng, 2023. "Degradation prediction of proton exchange membrane fuel cell based on the multi-inputs Bi-directional long short-term memory," Applied Energy, Elsevier, vol. 344(C).
    13. Zhu, Yuli & Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wang, Rong & Wei, Xuezhe & Dai, Haifeng, 2023. "Adaptive state of health estimation for lithium-ion batteries using impedance-based timescale information and ensemble learning," Energy, Elsevier, vol. 284(C).
    14. Tao, Zihan & Zhang, Chu & Xiong, Jinlin & Hu, Haowen & Ji, Jie & Peng, Tian & Nazir, Muhammad Shahzad, 2023. "Evolutionary gate recurrent unit coupling convolutional neural network and improved manta ray foraging optimization algorithm for performance degradation prediction of PEMFC," Applied Energy, Elsevier, vol. 336(C).
    15. Hegazy Rezk & Tabbi Wilberforce & A. G. Olabi & Rania M. Ghoniem & Enas Taha Sayed & Mohammad Ali Abdelkareem, 2023. "Optimal Parameter Identification of a PEM Fuel Cell Using Recent Optimization Algorithms," Energies, MDPI, vol. 16(14), pages 1-20, July.
    16. Li, Alan G. & West, Alan C. & Preindl, Matthias, 2022. "Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review," Applied Energy, Elsevier, vol. 316(C).
    17. Hua, Zhiguang & Zheng, Zhixue & Péra, Marie-Cécile & Gao, Fei, 2020. "Remaining useful life prediction of PEMFC systems based on the multi-input echo state network," Applied Energy, Elsevier, vol. 265(C).
    18. Gouda, Eid A. & Kotb, Mohamed F. & El-Fergany, Attia A., 2021. "Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models: Steady-state performance and analysis," Energy, Elsevier, vol. 221(C).
    19. Alaa A. Zaky & Rania M. Ghoniem & F. Selim, 2023. "Precise Modeling of Proton Exchange Membrane Fuel Cell Using the Modified Bald Eagle Optimization Algorithm," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    20. Zou, Weitao & Li, Jianwei & Yang, Qingqing & Wan, Xinming & He, Yuntang & Lan, Hao, 2023. "A real-time energy management approach with fuel cell and battery competition-synergy control for the fuel cell vehicle," Applied Energy, Elsevier, vol. 334(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221023884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.