IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7235-d931591.html
   My bibliography  Save this article

The Role of Hydrogen in the Visegrad Group Approach to Energy Transition

Author

Listed:
  • Ewelina Kochanek

    (Faculty of Social Sciences, Institute of Politics and Security Sciences, University of Szczecin, 71-017 Szczecin, Poland)

Abstract

Hydrogen is an energy carrier in which hopes are placed for an easier achievement of climate neutrality. Together with electrification, energy efficiency development, and RES, hydrogen is expected to enable the ambitious energy goals of the European Green Deal. Hence, the aim of the article is to query the development of the hydrogen economy in the Visegrad Group countries (V4). The study considers six diagnostic features: sources of hydrogen production, hydrogen legislation, financial mechanisms, objectives included in the hydrogen strategy, environmental impact of H2, and costs of green hydrogen investments. The analysis also allowed to indicate the role that hydrogen will play in the energy transition process of the V4 countries. The analysis shows that the V4 countries have similar approaches to the development of the hydrogen market, but the hydrogen strategies published by each of the Visegrad countries are not the same. Each document sets goals based on the hydrogen production to date and the specifics of the domestic energy and transport sectors, as there are no solutions that are equally effective for all. Poland’s hydrogen strategy definitely stands out the strongest.

Suggested Citation

  • Ewelina Kochanek, 2022. "The Role of Hydrogen in the Visegrad Group Approach to Energy Transition," Energies, MDPI, vol. 15(19), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7235-:d:931591
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7235/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7235/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lidia Gawlik & Eugeniusz Mokrzycki, 2021. "Analysis of the Polish Hydrogen Strategy in the Context of the EU’s Strategic Documents on Hydrogen," Energies, MDPI, vol. 14(19), pages 1-15, October.
    2. Ewelina Kochanek, 2021. "The Energy Transition in the Visegrad Group Countries," Energies, MDPI, vol. 14(8), pages 1-13, April.
    3. Elkhan Richard Sadik-Zada, 2021. "Political Economy of Green Hydrogen Rollout: A Global Perspective," Sustainability, MDPI, vol. 13(23), pages 1-11, December.
    4. dos Santos, Kenia Gabriela & Eckert, Caroline Thaís & De Rossi, Eduardo & Bariccatti, Reinaldo Aparecido & Frigo, Elisandro Pires & Lindino, Cleber Antonio & Alves, Helton José, 2017. "Hydrogen production in the electrolysis of water in Brazil, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 563-571.
    5. André Wolf & Nils Zander, 2021. "Green Hydrogen in Europe: Do Strategies Meet Expectations?," Intereconomics: Review of European Economic Policy, Springer;ZBW - Leibniz Information Centre for Economics;Centre for European Policy Studies (CEPS), vol. 56(6), pages 316-323, November.
    6. Capros, Pantelis & Zazias, Georgios & Evangelopoulou, Stavroula & Kannavou, Maria & Fotiou, Theofano & Siskos, Pelopidas & De Vita, Alessia & Sakellaris, Konstantinos, 2019. "Energy-system modelling of the EU strategy towards climate-neutrality," Energy Policy, Elsevier, vol. 134(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roman Blazek & Pavol Durana & Jakub Michulek, 2023. "Renaissance of Creative Accounting Due to the Pandemic: New Patterns Explored by Correspondence Analysis," Stats, MDPI, vol. 6(1), pages 1-20, March.
    2. Banaja Mohanty & Rajvikram Madurai Elavarasan & Hany M. Hasanien & Elangovan Devaraj & Rania A. Turky & Rishi Pugazhendhi, 2022. "Parameters Identification of Proton Exchange Membrane Fuel Cell Model Based on the Lightning Search Algorithm," Energies, MDPI, vol. 15(21), pages 1-19, October.
    3. Anna Barwińska Małajowicz & Miroslava Knapková & Krzysztof Szczotka & Miriam Martinkovičová & Radosław Pyrek, 2022. "Energy Efficiency Policies in Poland and Slovakia in the Context of Individual Well-Being," Energies, MDPI, vol. 16(1), pages 1-29, December.
    4. Jae-Eun Shin, 2022. "Hydrogen Technology Development and Policy Status by Value Chain in South Korea," Energies, MDPI, vol. 15(23), pages 1-19, November.
    5. Marzena Smol & Paulina Marcinek & Zuzana Šimková & Tomáš Bakalár & Milan Hemzal & Jiří Jaromír Klemeš & Yee Van Fan & Kinga Lorencz & Eugeniusz Koda & Anna Podlasek, 2022. "Inventory of Good Practices of Sustainable and Circular Phosphorus Management in the Visegrad Group (V4)," Resources, MDPI, vol. 12(1), pages 1-17, December.
    6. Rishabh Agarwal, 2022. "Transition to a Hydrogen-Based Economy: Possibilities and Challenges," Sustainability, MDPI, vol. 14(23), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arturo Vallejos-Romero & Minerva Cordoves-Sánchez & César Cisternas & Felipe Sáez-Ardura & Ignacio Rodríguez & Antonio Aledo & Álex Boso & Jordi Prades & Boris Álvarez, 2022. "Green Hydrogen and Social Sciences: Issues, Problems, and Future Challenges," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    2. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
    3. Xu, Guangyue & Dong, Haoyun & Xu, Zhenci & Bhattarai, Nishan, 2022. "China can reach carbon neutrality before 2050 by improving economic development quality," Energy, Elsevier, vol. 243(C).
    4. Tomasz Zema & Adam Sulich, 2022. "Models of Electricity Price Forecasting: Bibliometric Research," Energies, MDPI, vol. 15(15), pages 1-18, August.
    5. Lee, Boreum & Lim, Dongjun & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2021. "Techno-economic analysis of H2 energy storage system based on renewable energy certificate," Renewable Energy, Elsevier, vol. 167(C), pages 91-98.
    6. Katharina Löhr & Custódio Efraim Matavel & Sophia Tadesse & Masoud Yazdanpanah & Stefan Sieber & Nadejda Komendantova, 2022. "Just Energy Transition: Learning from the Past for a More Just and Sustainable Hydrogen Transition in West Africa," Land, MDPI, vol. 11(12), pages 1-23, December.
    7. Bartłomiej Bajan & Joanna Łukasiewicz & Aldona Mrówczyńska-Kamińska, 2021. "Energy Consumption and Its Structures in Food Production Systems of the Visegrad Group Countries Compared with EU-15 Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    8. Liang Shen & Fei Lin & T. C. E. Cheng, 2022. "Low-Carbon Transition Models of High Carbon Supply Chains under the Mixed Carbon Cap-and-Trade and Carbon Tax Policy in the Carbon Neutrality Era," IJERPH, MDPI, vol. 19(18), pages 1-21, September.
    9. Barbara Kaczmarczyk & Karolina Lis & Anna Bogucka, 2023. "Renewable Energy Management in European Union Member States," Energies, MDPI, vol. 16(16), pages 1-12, August.
    10. Rocio Gonzalez Sanchez & Anatoli Chatzipanagi & Georgia Kakoulaki & Marco Buffi & Sandor Szabo, 2023. "The Role of Direct Air Capture in EU’s Decarbonisation and Associated Carbon Intensity for Synthetic Fuels Production," Energies, MDPI, vol. 16(9), pages 1-28, May.
    11. Christoph Loschan & Daniel Schwabeneder & Matthias Maldet & Georg Lettner & Hans Auer, 2023. "Hydrogen as Short-Term Flexibility and Seasonal Storage in a Sector-Coupled Electricity Market," Energies, MDPI, vol. 16(14), pages 1-35, July.
    12. Gouveia, M.C. & Henriques, C.O. & Dias, L.C., 2023. "Eco-efficiency changes of the electricity and gas sectors across 28 European countries: A value-based data envelopment analysis productivity approach," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    13. Jäger-Waldau, Arnulf & Kougias, Ioannis & Taylor, Nigel & Thiel, Christian, 2020. "How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    14. Backe, Stian & Zwickl-Bernhard, Sebastian & Schwabeneder, Daniel & Auer, Hans & Korpås, Magnus & Tomasgard, Asgeir, 2022. "Impact of energy communities on the European electricity and heating system decarbonization pathway: Comparing local and global flexibility responses," Applied Energy, Elsevier, vol. 323(C).
    15. Štefan Bojnec, 2023. "Electricity Markets, Electricity Prices and Green Energy Transition," Energies, MDPI, vol. 16(2), pages 1-4, January.
    16. Jacek Brożyna & Wadim Strielkowski & Aleš Zpěvák, 2023. "Evaluating the Chances of Implementing the “Fit for 55” Green Transition Package in the V4 Countries," Energies, MDPI, vol. 16(6), pages 1-17, March.
    17. Yuuki Yoshimoto & Koki Kishimoto & Kanchan Kumar Sen & Takako Mochida & Andrew Chapman, 2023. "Toward Economically Efficient Carbon Reduction: Contrasting Greening Plastic Supply Chains with Alternative Energy Policy Approaches," Sustainability, MDPI, vol. 15(17), pages 1-19, September.
    18. Legrand, Mathieu & Labajo-Hurtado, Raúl & Rodríguez-Antón, Luis Miguel & Doce, Yolanda, 2022. "Price arbitrage optimization of a photovoltaic power plant with liquid air energy storage. Implementation to the Spanish case," Energy, Elsevier, vol. 239(PA).
    19. Yilmaz, Hasan Ümitcan & Kimbrough, Steven O. & van Dinther, Clemens & Keles, Dogan, 2022. "Power-to-gas: Decarbonization of the European electricity system with synthetic methane," Applied Energy, Elsevier, vol. 323(C).
    20. Zivar Zeynalova & Natavan Namazova, 2022. "Revealing Consumer Behavior toward Green Consumption," Sustainability, MDPI, vol. 14(10), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7235-:d:931591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.