IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p42-d708237.html
   My bibliography  Save this article

Risk Identification in Cogeneration (Combined Heat and Power) Projects: A Polish Case Study

Author

Listed:
  • Joanna Rzempała

    (Institute of Management, Faculty of Economics, Finance and Management, University of Szczecin, 22A Aleja Papieża Jana Pawła II Str., 70-453 Szczecin, Poland)

  • Daniel Borkowski

    (Legal Partner, 18/5 Nowogrodzka Str., 00-511 Warsaw, Poland)

  • Artur Piotr Rzempała

    (Faculty of Economics and Transport Engineering, Maritime University of Szczecin, 1-2 Wały Chrobrego Str., 70-500 Szczecin, Poland)

Abstract

The purpose of the article is to define the risk factors in cogeneration projects and to demonstrate that a lack of sufficient identification of risks in different phases affects project implementation. A theoretical study is conducted, which aims to identify risk factors in cogeneration projects, based on case studies of such projects in Poland. The study offers a view at CHP (combined heat and power) projects as extremely dependent on the external environment of the organisation. These projects are subject to many external regulations due to their environmental impact and dynamically changing technical aspects. The biggest technical errors occur at the planning and construction stages. The biggest economic and financial risks occur at the execution stage after 2% and 3% of additional design costs occur, respectively. The authors estimated the risks at different stages of the project and concluded that the total cost of failure in correct identification of the risks at the planning stage exceeded PLN 1.5 billion, which amounted to almost 60% of the total additional costs of materialised project risk. Consequently, the biggest challenges in the area of CHP project management at the planning stage are a thorough identification of risks, and the pricing and planning reactions to risk.

Suggested Citation

  • Joanna Rzempała & Daniel Borkowski & Artur Piotr Rzempała, 2021. "Risk Identification in Cogeneration (Combined Heat and Power) Projects: A Polish Case Study," Energies, MDPI, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:42-:d:708237
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/42/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/42/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ewelina Kochanek, 2021. "The Energy Transition in the Visegrad Group Countries," Energies, MDPI, vol. 14(8), pages 1-13, April.
    2. Mihail Nikolaevich Dudin & Evgenia Evgenevna Frolova & Valentina Nikolaevna Sidorenko & Ekaterina Pogrebinskaya & Irina Vladimirovna Nikishina, 2017. "Energy Policy of the European Union: Challenges and Possible Development Paths," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 294-299.
    3. Fausto Cavallaro & Edmundas Kazimieras Zavadskas & Saulius Raslanas, 2016. "Evaluation of Combined Heat and Power (CHP) Systems Using Fuzzy Shannon Entropy and Fuzzy TOPSIS," Sustainability, MDPI, vol. 8(6), pages 1-21, June.
    4. Karl Magnus Maribu & Stein-Erik Fleten, 2008. "Combined Heat and Power in Commercial Buildings: Investment and Risk Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 123-150.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Valentinas Podvezko & Ieva Ubarte & Arturas Kaklauskas, 2017. "MCDM Assessment of a Healthy and Safe Built Environment According to Sustainable Development Principles: A Practical Neighborhood Approach in Vilnius," Sustainability, MDPI, vol. 9(5), pages 1-30, April.
    2. Marcin Rabe & Dalia Streimikiene & Yuriy Bilan, 2019. "The Concept of Risk and Possibilities of Application of Mathematical Methods in Supporting Decision Making for Sustainable Energy Development," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    3. Mikhail Nikolaevich Dudin & Mikhail Nikolaevich Dudin & Evgenia Evgenevna Frolova & Evgenia Evgenevna Frolova & Olga Vadimirovna Protopopova & Oktay Mamedov & Stanislav Valerievich Odintsov, 2019. "Study of innovative technologies in the energy industry: nontraditional and renewable energy sources," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 6(4), pages 1704-1713, June.
    4. Botterud, Audun & Yildiz, Bilge & Conzelmann, Guenter & Petri, Mark C., 2008. "Nuclear hydrogen: An assessment of product flexibility and market viability," Energy Policy, Elsevier, vol. 36(10), pages 3961-3973, October.
    5. Tomasz Zema & Adam Sulich, 2022. "Models of Electricity Price Forecasting: Bibliometric Research," Energies, MDPI, vol. 15(15), pages 1-18, August.
    6. Bartłomiej Bajan & Joanna Łukasiewicz & Aldona Mrówczyńska-Kamińska, 2021. "Energy Consumption and Its Structures in Food Production Systems of the Visegrad Group Countries Compared with EU-15 Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    7. Athawale, Rasika & Felder, Frank A. & Goldman, Leo A., 2016. "Do Combined Heat and Power plants perform? Case study of publicly funded projects in New York," Energy Policy, Elsevier, vol. 97(C), pages 618-627.
    8. Mohamad Shahiir Saidin & Lai Soon Lee & Siti Mahani Marjugi & Muhammad Zaini Ahmad & Hsin-Vonn Seow, 2023. "Fuzzy Method Based on the Removal Effects of Criteria (MEREC) for Determining Objective Weights in Multi-Criteria Decision-Making Problems," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
    9. Barbara Kaczmarczyk & Karolina Lis & Anna Bogucka, 2023. "Renewable Energy Management in European Union Member States," Energies, MDPI, vol. 16(16), pages 1-12, August.
    10. Mu-Hsin Chang & James J. H. Liou & Huai-Wei Lo, 2019. "A Hybrid MCDM Model for Evaluating Strategic Alliance Partners in the Green Biopharmaceutical Industry," Sustainability, MDPI, vol. 11(15), pages 1-20, July.
    11. Gouveia, M.C. & Henriques, C.O. & Dias, L.C., 2023. "Eco-efficiency changes of the electricity and gas sectors across 28 European countries: A value-based data envelopment analysis productivity approach," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    12. Štefan Bojnec, 2023. "Electricity Markets, Electricity Prices and Green Energy Transition," Energies, MDPI, vol. 16(2), pages 1-4, January.
    13. Jacek Brożyna & Wadim Strielkowski & Aleš Zpěvák, 2023. "Evaluating the Chances of Implementing the “Fit for 55” Green Transition Package in the V4 Countries," Energies, MDPI, vol. 16(6), pages 1-17, March.
    14. Aliya Shakharova & Chinara Alamanova & Oleksandra Olshanska & Sofiia Kafka & Ilona Tuts & Gulnar Dugalova, 2023. "Towards the Implementation of the Environmental and Economic Doctrine of Energy Sector Development: An Environmental and Economic Assessment of Public-private Partnerships in Decarbonization," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 423-432, July.
    15. Valentyna Kukharets & Dalia Juočiūnienė & Taras Hutsol & Olena Sukmaniuk & Jonas Čėsna & Savelii Kukharets & Piotr Piersa & Szymon Szufa & Iryna Horetska & Alona Shevtsova, 2023. "An Algorithm for Managerial Actions on the Rational Use of Renewable Sources of Energy: Determination of the Energy Potential of Biomass in Lithuania," Energies, MDPI, vol. 16(1), pages 1-17, January.
    16. Dalia Štreimikienė & Vidas Lekavičius & Gintare Stankūnienė & Aušra Pažėraitė, 2022. "Renewable Energy Acceptance by Households: Evidence from Lithuania," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    17. Østergaard, Poul Alberg & Andersen, Anders N. & Sorknæs, Peter, 2022. "The business-economic energy system modelling tool energyPRO," Energy, Elsevier, vol. 257(C).
    18. Cavallaro, Fausto & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Mardani, Abbas, 2019. "Assessment of concentrated solar power (CSP) technologies based on a modified intuitionistic fuzzy topsis and trigonometric entropy weights," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 258-270.
    19. Yuhuan Zhang & Huapu Lu & Shengxi Luo & Zhiyuan Sun & Wencong Qu, 2017. "Human-Scale Sustainability Assessment of Urban Intersections Based upon Multi-Source Big Data," Sustainability, MDPI, vol. 9(7), pages 1-22, July.
    20. Marcin Olkiewicz & Anna Olkiewicz & Radosław Wolniak & Adam Wyszomirski, 2021. "Effects of Pro-Ecological Investments on an Example of the Heating Industry—Case Study," Energies, MDPI, vol. 14(18), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:42-:d:708237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.