IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1851-d158102.html
   My bibliography  Save this article

Reversible and Irreversible Potentials and an Inaccuracy in Popular Models in the Fuel Cell Literature

Author

Listed:
  • Uday K. Chakraborty

    (Department of Mathematics and Computer Science, University of Missouri, St. Louis, MO 63121, USA)

Abstract

Modeling is an integral part of fuel cell design and development. This paper identifies a long-standing inaccuracy in the fuel cell modeling literature. Specifically, it discusses an inexact insertion, in popular models, of cell/stack current into Nernst’s equation in the derivation of output (load) voltage. The origin of the inaccuracy is traced to the nature of reversible and irreversible potentials (equilibrium and non-equilibrium states) in the cell. The significance of the inaccuracy is explained in the context of the electrochemistry and thermodynamics of the fuel cell.

Suggested Citation

  • Uday K. Chakraborty, 2018. "Reversible and Irreversible Potentials and an Inaccuracy in Popular Models in the Fuel Cell Literature," Energies, MDPI, vol. 11(7), pages 1-11, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1851-:d:158102
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1851/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1851/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barelli, L. & Bidini, G. & Ottaviano, A., 2016. "Solid oxide fuel cell modelling: Electrochemical performance and thermal management during load-following operation," Energy, Elsevier, vol. 115(P1), pages 107-119.
    2. Chakraborty, Uday Kumar, 2009. "Static and dynamic modeling of solid oxide fuel cell using genetic programming," Energy, Elsevier, vol. 34(6), pages 740-751.
    3. Li Sun & Qingsong Hua & Jiong Shen & Yali Xue & Donghai Li & Kwang Y. Lee, 2017. "A Combined Voltage Control Strategy for Fuel Cell," Sustainability, MDPI, vol. 9(9), pages 1-15, August.
    4. Safari, Amin & Shahsavari, Hossein & Salehi, Javad, 2018. "A mathematical model of SOFC power plant for dynamic simulation of multi-machine power systems," Energy, Elsevier, vol. 149(C), pages 397-413.
    5. Chettibi, N. & Mellit, A., 2018. "Intelligent control strategy for a grid connected PV/SOFC/BESS energy generation system," Energy, Elsevier, vol. 147(C), pages 239-262.
    6. Chakraborty, Uday K. & Abbott, Travis E. & Das, Sajal K., 2012. "PEM fuel cell modeling using differential evolution," Energy, Elsevier, vol. 40(1), pages 387-399.
    7. Chakraborty, Uday Kumar, 2011. "An error in solid oxide fuel cell stack modeling," Energy, Elsevier, vol. 36(2), pages 801-802.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arne L. Lazar & Swantje C. Konradt & Hermann Rottengruber, 2019. "Open-Source Dynamic Matlab/Simulink 1D Proton Exchange Membrane Fuel Cell Model," Energies, MDPI, vol. 12(18), pages 1-12, September.
    2. Hegazy Rezk & Rania M. Ghoniem & Seydali Ferahtia & Ahmed Fathy & Mohamed M. Ghoniem & Reem Alkanhel, 2022. "A Comparison of Different Renewable-Based DC Microgrid Energy Management Strategies for Commercial Buildings Applications," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    3. Maloberti, Luca & Zaccone, Raphael, 2025. "An environmentally sustainable energy management strategy for marine hybrid propulsion," Energy, Elsevier, vol. 316(C).
    4. Uday K. Chakraborty, 2019. "Proton Exchange Membrane Fuel Cell Stack Design Optimization Using an Improved Jaya Algorithm," Energies, MDPI, vol. 12(16), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Hay, E.A. & El-Hameed, M.A. & El-Fergany, A.A., 2019. "Optimized Parameters of SOFC for steady state and transient simulations using interior search algorithm," Energy, Elsevier, vol. 166(C), pages 451-461.
    2. Uday K. Chakraborty, 2019. "Proton Exchange Membrane Fuel Cell Stack Design Optimization Using an Improved Jaya Algorithm," Energies, MDPI, vol. 12(16), pages 1-26, August.
    3. Henry Miniguano & Andrés Barrado & Cristina Fernández & Pablo Zumel & Antonio Lázaro, 2019. "A General Parameter Identification Procedure Used for the Comparative Study of Supercapacitors Models," Energies, MDPI, vol. 12(9), pages 1-20, May.
    4. Chakraborty, Uday K. & Abbott, Travis E. & Das, Sajal K., 2012. "PEM fuel cell modeling using differential evolution," Energy, Elsevier, vol. 40(1), pages 387-399.
    5. Banaja Mohanty & Rajvikram Madurai Elavarasan & Hany M. Hasanien & Elangovan Devaraj & Rania A. Turky & Rishi Pugazhendhi, 2022. "Parameters Identification of Proton Exchange Membrane Fuel Cell Model Based on the Lightning Search Algorithm," Energies, MDPI, vol. 15(21), pages 1-19, October.
    6. Puja Bhatt & Neha Agarwal & Uday K. Chakraborty, 2016. "Parameter Optimization of PEMFC with Genetic Algorithm," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 241-249, November.
    7. Yuxiao Qin & Guodong Zhao & Qingsong Hua & Li Sun & Soumyadeep Nag, 2019. "Multiobjective Genetic Algorithm-Based Optimization of PID Controller Parameters for Fuel Cell Voltage and Fuel Utilization," Sustainability, MDPI, vol. 11(12), pages 1-20, June.
    8. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    9. Sharifi Asl, S.M. & Rowshanzamir, S. & Eikani, M.H., 2010. "Modelling and simulation of the steady-state and dynamic behaviour of a PEM fuel cell," Energy, Elsevier, vol. 35(4), pages 1633-1646.
    10. Dong, Weijie & He, Guoqing & Cui, Quansheng & Sun, Wenwen & Hu, Zhenlong & Ahli raad, Erfan, 2022. "Self-scheduling of a novel hybrid GTSOFC unit in day-ahead energy and spinning reserve markets within ancillary services using a novel energy storage," Energy, Elsevier, vol. 239(PE).
    11. Zhenlong Wu & Ting He & Li Sun & Donghai Li & Yali Xue, 2018. "The Facilitation of a Sustainable Power System: A Practice from Data-Driven Enhanced Boiler Control," Sustainability, MDPI, vol. 10(4), pages 1-21, April.
    12. Vitayasak, Srisatja & Pongcharoen, Pupong & Hicks, Chris, 2017. "A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm," International Journal of Production Economics, Elsevier, vol. 190(C), pages 146-157.
    13. Xu, Shuhui & Wang, Yong & Wang, Zhi, 2019. "Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method," Energy, Elsevier, vol. 173(C), pages 457-467.
    14. Priya, K. & Sathishkumar, K. & Rajasekar, N., 2018. "A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 121-144.
    15. Touqeer Ahmed Jumani & Mohd Wazir Mustafa & Nawaf N. Hamadneh & Samer H. Atawneh & Madihah Md. Rasid & Nayyar Hussain Mirjat & Muhammad Akram Bhayo & Ilyas Khan, 2020. "Computational Intelligence-Based Optimization Methods for Power Quality and Dynamic Response Enhancement of ac Microgrids," Energies, MDPI, vol. 13(16), pages 1-22, August.
    16. Rahnavard, Aylin & Rowshanzamir, Soosan & Parnian, Mohammad Javad & Amirkhanlou, Gholam Reza, 2015. "The effect of sulfonated poly (ether ether ketone) as the electrode ionomer for self-humidifying nanocomposite proton exchange membrane fuel cells," Energy, Elsevier, vol. 82(C), pages 746-757.
    17. Chen Chen & Lei Pan & Shanjian Liu & Li Sun & Kwang Y. Lee, 2018. "A Sustainable Power Plant Control Strategy Based on Fuzzy Extended State Observer and Predictive Control," Sustainability, MDPI, vol. 10(12), pages 1-21, December.
    18. Barelli, L. & Bidini, G. & Ottaviano, A., 2017. "Integration of SOFC/GT hybrid systems in Micro-Grids," Energy, Elsevier, vol. 118(C), pages 716-728.
    19. Nikiforakis, Ioannis & Mamalis, Sotirios & Assanis, Dimitris, 2025. "Understanding Solid Oxide Fuel Cell Hybridization: A Critical Review," Applied Energy, Elsevier, vol. 377(PC).
    20. Andrew J. Riad & Hany M. Hasanien & Rania A. Turky & Ahmed H. Yakout, 2023. "Identifying the PEM Fuel Cell Parameters Using Artificial Rabbits Optimization Algorithm," Sustainability, MDPI, vol. 15(5), pages 1-17, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1851-:d:158102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.