IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6138-d896074.html
   My bibliography  Save this article

Superconductivity and Hydrogen Economy: A Roadmap to Synergy

Author

Listed:
  • Masih Mojarrad

    (Department of Physics, University of Oslo, 0371 Oslo, Norway)

  • Sana Farhoudian

    (Faculty of Engineering and Natural Sciences, Tampere University, 33100 Tampere, Finland)

  • Pavlo Mikheenko

    (Department of Physics, University of Oslo, 0371 Oslo, Norway)

Abstract

Hydrogen as an energy carrier is a promising alternative to fossil fuels, and it becomes more and more popular in developed countries as a carbon-free fuel. The low boiling temperature of hydrogen (20 K or −253.15 °C) provides a unique opportunity to implement superconductors with a critical temperature above 20 K such as MgB 2 or high-temperature superconductors. Superconductors increase efficiency and reduce the loss of energy, which could compensate for the high price of LH 2 to some extent. Norway is one of the pioneer countries with adequate infrastructure for using liquid hydrogen in the industry, especially in marine technology where a superconducting propulsion system can make a remarkable impact on its economy. Using superconductors in the motor of a propulsion system can increase its efficiency from 95% to 98% when the motor operates at full power. The difference in efficiency is even greater when the motor does not work at full power. Here, we survey the applications of liquid hydrogen and superconductors and propose a realistic roadmap for their synergy, specifically for the Norwegian economy in the marine industry.

Suggested Citation

  • Masih Mojarrad & Sana Farhoudian & Pavlo Mikheenko, 2022. "Superconductivity and Hydrogen Economy: A Roadmap to Synergy," Energies, MDPI, vol. 15(17), pages 1-12, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6138-:d:896074
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6138/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6138/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Markus Reuß & Paris Dimos & Aline Léon & Thomas Grube & Martin Robinius & Detlef Stolten, 2021. "Hydrogen Road Transport Analysis in the Energy System: A Case Study for Germany through 2050," Energies, MDPI, vol. 14(11), pages 1-17, May.
    2. Stavros Lazarou & Sofoklis Makridis, 2017. "Hydrogen Storage Technologies for Smart Grid Applications," Challenges, MDPI, vol. 8(1), pages 1-11, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Genovese & David Blekhman & Michael Dray & Francesco Piraino & Petronilla Fragiacomo, 2023. "Experimental Comparison of Hydrogen Refueling with Directly Pressurized vs. Cascade Method," Energies, MDPI, vol. 16(15), pages 1-14, August.
    2. Yilmaz, Hasan Ümitcan & Kimbrough, Steven O. & van Dinther, Clemens & Keles, Dogan, 2022. "Power-to-gas: Decarbonization of the European electricity system with synthetic methane," Applied Energy, Elsevier, vol. 323(C).
    3. Alkistis E. Kanteraki & Grigorios L. Kyriakopoulos & Miltiadis Zamparas & Vasilis C. Kapsalis & Sofoklis S. Makridis & Giouli Mihalakakou, 2020. "Investigating Thermal Performance of Residential Buildings in Marmari Region, South Evia, Greece," Challenges, MDPI, vol. 11(1), pages 1-22, February.
    4. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2023. "Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 255(C).
    5. Michalena, Evanthie & Kouloumpis, Viktor & Hills, Jeremy M., 2018. "Challenges for Pacific Small Island Developing States in achieving their Nationally Determined Contributions (NDC)," Energy Policy, Elsevier, vol. 114(C), pages 508-518.
    6. Mukelabai, Mulako Dean & Wijayantha, Upul K.G. & Blanchard, Richard E., 2022. "Renewable hydrogen economy outlook in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2022. "Reprint of: Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 250(C).
    8. Tomasz Jałowiec & Dariusz Grala & Piotr Maśloch & Henryk Wojtaszek & Grzegorz Maśloch & Agnieszka Wójcik-Czerniawska, 2022. "Analysis of the Implementation of Functional Hydrogen Assumptions in Poland and Germany," Energies, MDPI, vol. 15(22), pages 1-25, November.
    9. Mahdi Takach & Mirza Sarajlić & Dorothee Peters & Michael Kroener & Frank Schuldt & Karsten von Maydell, 2022. "Review of Hydrogen Production Techniques from Water Using Renewable Energy Sources and Its Storage in Salt Caverns," Energies, MDPI, vol. 15(4), pages 1-17, February.
    10. Antoni Żywczak & Łukasz Gondek & Joanna Czub & Piotr Janusz & Nivas Babu Selvaraj & Akito Takasaki, 2022. "Physical Properties of Ti 45 Zr 38 Fe 17 Alloy and Its Amorphous Hydride," Energies, MDPI, vol. 15(12), pages 1-8, June.
    11. Alessandro Guzzini & Giovanni Brunaccini & Davide Aloisio & Marco Pellegrini & Cesare Saccani & Francesco Sergi, 2023. "A New Geographic Information System (GIS) Tool for Hydrogen Value Chain Planning Optimization: Application to Italian Highways," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    12. Gupta, Ruchi & Guibentif, Thomas M.M. & Friedl, Markus & Parra, David & Patel, Martin Kumar, 2023. "Macroeconomic analysis of a new green hydrogen industry using Input-Output analysis: The case of Switzerland," Energy Policy, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6138-:d:896074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.