IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5298-d868252.html
   My bibliography  Save this article

A Comparative Analysis on the Variability of Temperature Thresholds through Time for Wind Turbine Generators Using Normal Behaviour Modelling

Author

Listed:
  • Alan Turnbull

    (Institute of Energy and Environment, Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK)

  • James Carroll

    (Institute of Energy and Environment, Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK)

  • Alasdair McDonald

    (Institute for Energy Systems, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK)

Abstract

Data-driven normal behaviour models have gained traction over the last few years as a convenient way of modelling turbine operational health to detect anomalies. By leveraging high-dimensional operational relationships, temperature thresholds can be automatically calculated based on each individual turbine unique operating envelope, in theory minimising false alarms and providing more reliable diagnostics. The aim of this work is to provide further insight into practical uses and limitations of implementing normal behaviour temperature models in practice, to inform practitioners, as well as assist in improving wind turbine generator fault detection systems. Results suggest that, on average, as little as two months of data are adequate to produce stable temperature alarm thresholds, with the worst case example requiring approximately 200–290 days of data depending on the component and desired convergence criteria.

Suggested Citation

  • Alan Turnbull & James Carroll & Alasdair McDonald, 2022. "A Comparative Analysis on the Variability of Temperature Thresholds through Time for Wind Turbine Generators Using Normal Behaviour Modelling," Energies, MDPI, vol. 15(14), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5298-:d:868252
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5298/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5298/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kwok L. Tsui & Nan Chen & Qiang Zhou & Yizhen Hai & Wenbin Wang, 2015. "Prognostics and Health Management: A Review on Data Driven Approaches," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-17, May.
    2. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    3. Yonglong Yan & Jian Li & David Wenzhong Gao, 2014. "Condition Parameter Modeling for Anomaly Detection in Wind Turbines," Energies, MDPI, vol. 7(5), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Murgia & Robbert Verbeke & Elena Tsiporkova & Ludovico Terzi & Davide Astolfi, 2023. "Discussion on the Suitability of SCADA-Based Condition Monitoring for Wind Turbine Fault Diagnosis through Temperature Data Analysis," Energies, MDPI, vol. 16(2), pages 1-20, January.
    2. Davide Astolfi & Ravi Pandit & Andrea Lombardi & Ludovico Terzi, 2022. "Multivariate Data-Driven Models for Wind Turbine Power Curves including Sub-Component Temperatures," Energies, MDPI, vol. 16(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alan Turnbull & Conor McKinnon & James Carrol & Alasdair McDonald, 2022. "On the Development of Offshore Wind Turbine Technology: An Assessment of Reliability Rates and Fault Detection Methods in a Changing Market," Energies, MDPI, vol. 15(9), pages 1-20, April.
    2. Alan Turnbull & James Carroll, 2021. "Cost Benefit of Implementing Advanced Monitoring and Predictive Maintenance Strategies for Offshore Wind Farms," Energies, MDPI, vol. 14(16), pages 1-14, August.
    3. Reddy, Sohail R., 2021. "A machine learning approach for modeling irregular regions with multiple owners in wind farm layout design," Energy, Elsevier, vol. 220(C).
    4. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    5. Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
    6. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    7. Peng Sun & Jian Li & Junsheng Chen & Xiao Lei, 2016. "A Short-Term Outage Model of Wind Turbines with Doubly Fed Induction Generators Based on Supervisory Control and Data Acquisition Data," Energies, MDPI, vol. 9(11), pages 1-21, October.
    8. Ali Rohan, 2022. "Holistic Fault Detection and Diagnosis System in Imbalanced, Scarce, Multi-Domain (ISMD) Data Setting for Component-Level Prognostics and Health Management (PHM)," Mathematics, MDPI, vol. 10(12), pages 1-22, June.
    9. Lei Fu & Tiantian Zhu & Kai Zhu & Yiling Yang, 2019. "Condition Monitoring for the Roller Bearings of Wind Turbines under Variable Working Conditions Based on the Fisher Score and Permutation Entropy," Energies, MDPI, vol. 12(16), pages 1-20, August.
    10. Ma, Jie & Cai, Li & Liao, Guobo & Yin, Hongpeng & Si, Xiaosheng & Zhang, Peng, 2023. "A multi-phase Wiener process-based degradation model with imperfect maintenance activities," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    11. Ti, Zilong & Deng, Xiao Wei & Zhang, Mingming, 2021. "Artificial Neural Networks based wake model for power prediction of wind farm," Renewable Energy, Elsevier, vol. 172(C), pages 618-631.
    12. Lu, Xuefei & Baraldi, Piero & Zio, Enrico, 2020. "A data-driven framework for identifying important components in complex systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    13. Phong B. Dao, 2021. "A CUSUM-Based Approach for Condition Monitoring and Fault Diagnosis of Wind Turbines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    14. Meng Li & Shuangxin Wang, 2019. "Dynamic Fault Monitoring of Pitch System in Wind Turbines using Selective Ensemble Small-World Neural Networks," Energies, MDPI, vol. 12(17), pages 1-20, August.
    15. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    16. Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
    17. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    18. Conor McKinnon & Alan Turnbull & Sofia Koukoura & James Carroll & Alasdair McDonald, 2020. "Effect of Time History on Normal Behaviour Modelling Using SCADA Data to Predict Wind Turbine Failures," Energies, MDPI, vol. 13(18), pages 1-19, September.
    19. Zemali, Zakaria & Cherroun, Lakhmissi & Hadroug, Nadji & Hafaifa, Ahmed & Iratni, Abdelhamid & Alshammari, Obaid S. & Colak, Ilhami, 2023. "Robust intelligent fault diagnosis strategy using Kalman observers and neuro-fuzzy systems for a wind turbine benchmark," Renewable Energy, Elsevier, vol. 205(C), pages 873-898.
    20. Juan D. Velásquez & Lorena Cadavid & Carlos J. Franco, 2023. "Intelligence Techniques in Sustainable Energy: Analysis of a Decade of Advances," Energies, MDPI, vol. 16(19), pages 1-45, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5298-:d:868252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.