IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p165-d1013178.html
   My bibliography  Save this article

Multivariate Data-Driven Models for Wind Turbine Power Curves including Sub-Component Temperatures

Author

Listed:
  • Davide Astolfi

    (Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy)

  • Ravi Pandit

    (Centre for Life-Cycle Engineering and Management (CLEM), School of Aerospace Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK)

  • Andrea Lombardi

    (ENGIE Italia, Via Chiese, 20126 Milano, Italy)

  • Ludovico Terzi

    (ENGIE Italia, Via Chiese, 20126 Milano, Italy)

Abstract

The most commonly employed tool for wind turbine performance analysis is the power curve, which is the relation between wind intensity and power. The diffusion of SCADA systems has boosted the adoption of data-driven approaches to power curves. In particular, a recent research line involves multivariate methods, employing further input variables in addition to the wind speed. In this work, an innovative contribution is investigated, which is the inclusion of thirteen sub-component temperatures as possible covariates. This is discussed through a real-world test case, based on data provided by ENGIE Italia. Two models are analyzed: support vector regression with Gaussian kernel and Gaussian process regression. The input variables are individuated through a sequential feature selection algorithm. The sub-component temperatures are abundantly selected as input variables, proving the validity of the idea proposed in this work. The obtained error metrics are lower with respect to benchmark models employing more typical input variables: the resulting mean absolute error is 1.35% of the rated power. The results of the two types of selected regressions are not remarkably different. This supports that the qualifying points are, rather than the model type, the use and the selection of a potentially vast number of input variables.

Suggested Citation

  • Davide Astolfi & Ravi Pandit & Andrea Lombardi & Ludovico Terzi, 2022. "Multivariate Data-Driven Models for Wind Turbine Power Curves including Sub-Component Temperatures," Energies, MDPI, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:165-:d:1013178
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/165/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/165/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ding, Yu & Kumar, Nitesh & Prakash, Abhinav & Kio, Adaiyibo E. & Liu, Xin & Liu, Lei & Li, Qingchang, 2021. "A case study of space-time performance comparison of wind turbines on a wind farm," Renewable Energy, Elsevier, vol. 171(C), pages 735-746.
    2. Becky Corley & Sofia Koukoura & James Carroll & Alasdair McDonald, 2021. "Combination of Thermal Modelling and Machine Learning Approaches for Fault Detection in Wind Turbine Gearboxes," Energies, MDPI, vol. 14(5), pages 1-14, March.
    3. Davide Astolfi & Ravi Pandit & Ludovico Terzi & Andrea Lombardi, 2022. "Discussion of Wind Turbine Performance Based on SCADA Data and Multiple Test Case Analysis," Energies, MDPI, vol. 15(15), pages 1-17, July.
    4. Nikolaos P. Theodorakatos & Miltiadis Lytras & Rohit Babu, 2020. "Towards Smart Energy Grids: A Box-Constrained Nonlinear Underdetermined Model for Power System Observability Using Recursive Quadratic Programming," Energies, MDPI, vol. 13(7), pages 1-17, April.
    5. Davide Astolfi & Francesco Castellani & Matteo Becchetti & Andrea Lombardi & Ludovico Terzi, 2020. "Wind Turbine Systematic Yaw Error: Operation Data Analysis Techniques for Detecting It and Assessing Its Performance Impact," Energies, MDPI, vol. 13(9), pages 1-17, May.
    6. Yingying Zhao & Dongsheng Li & Ao Dong & Dahai Kang & Qin Lv & Li Shang, 2017. "Fault Prediction and Diagnosis of Wind Turbine Generators Using SCADA Data," Energies, MDPI, vol. 10(8), pages 1-17, August.
    7. Alan Turnbull & James Carroll & Alasdair McDonald, 2022. "A Comparative Analysis on the Variability of Temperature Thresholds through Time for Wind Turbine Generators Using Normal Behaviour Modelling," Energies, MDPI, vol. 15(14), pages 1-13, July.
    8. Karamichailidou, Despina & Kaloutsa, Vasiliki & Alexandridis, Alex, 2021. "Wind turbine power curve modeling using radial basis function neural networks and tabu search," Renewable Energy, Elsevier, vol. 163(C), pages 2137-2152.
    9. Ciulla, G. & D’Amico, A. & Di Dio, V. & Lo Brano, V., 2019. "Modelling and analysis of real-world wind turbine power curves: Assessing deviations from nominal curve by neural networks," Renewable Energy, Elsevier, vol. 140(C), pages 477-492.
    10. Davide Astolfi & Francesco Castellani & Andrea Lombardi & Ludovico Terzi, 2021. "Multivariate SCADA Data Analysis Methods for Real-World Wind Turbine Power Curve Monitoring," Energies, MDPI, vol. 14(4), pages 1-18, February.
    11. Zhang, Jiaan & Liu, Dong & Li, Zhijun & Han, Xu & Liu, Hui & Dong, Cun & Wang, Junyan & Liu, Chenyu & Xia, Yunpeng, 2021. "Power prediction of a wind farm cluster based on spatiotemporal correlations," Applied Energy, Elsevier, vol. 302(C).
    12. Davide Astolfi & Ravi Pandit & Linyue Gao & Jiarong Hong, 2022. "Individuation of Wind Turbine Systematic Yaw Error through SCADA Data," Energies, MDPI, vol. 15(21), pages 1-5, November.
    13. Gonzalez, Elena & Stephen, Bruce & Infield, David & Melero, Julio J., 2019. "Using high-frequency SCADA data for wind turbine performance monitoring: A sensitivity study," Renewable Energy, Elsevier, vol. 131(C), pages 841-853.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Murgia & Robbert Verbeke & Elena Tsiporkova & Ludovico Terzi & Davide Astolfi, 2023. "Discussion on the Suitability of SCADA-Based Condition Monitoring for Wind Turbine Fault Diagnosis through Temperature Data Analysis," Energies, MDPI, vol. 16(2), pages 1-20, January.
    2. Francesco Castellani & Ravi Pandit & Francesco Natili & Francesca Belcastro & Davide Astolfi, 2023. "Advanced Methods for Wind Turbine Performance Analysis Based on SCADA Data and CFD Simulations," Energies, MDPI, vol. 16(3), pages 1-15, January.
    3. Huifan Zeng & Juchuan Dai & Chengming Zuo & Huanguo Chen & Mimi Li & Fan Zhang, 2022. "Correlation Investigation of Wind Turbine Multiple Operating Parameters Based on SCADA Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
    4. Pengfei Zhang & Zuoxia Xing & Shanshan Guo & Mingyang Chen & Qingqi Zhao, 2022. "A New Wind Turbine Power Performance Assessment Approach: SCADA to Power Model Based with Regression-Kriging," Energies, MDPI, vol. 15(13), pages 1-15, July.
    5. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    6. Guo, Peng & Gan, Yu & Infield, David, 2022. "Wind turbine performance degradation monitoring using DPGMM and Mahalanobis distance," Renewable Energy, Elsevier, vol. 200(C), pages 1-9.
    7. Davide Astolfi & Francesco Castellani, 2022. "Editorial on the Special Issue “Wind Turbine Monitoring through Operation Data Analysis”," Energies, MDPI, vol. 15(10), pages 1-4, May.
    8. Davide Astolfi & Raymond Byrne & Francesco Castellani, 2020. "Analysis of Wind Turbine Aging through Operation Curves," Energies, MDPI, vol. 13(21), pages 1-21, October.
    9. Wang, Peng & Li, Yanting & Zhang, Guangyao, 2023. "Probabilistic power curve estimation based on meteorological factors and density LSTM," Energy, Elsevier, vol. 269(C).
    10. Zou, Runmin & Yang, Jiaxin & Wang, Yun & Liu, Fang & Essaaidi, Mohamed & Srinivasan, Dipti, 2021. "Wind turbine power curve modeling using an asymmetric error characteristic-based loss function and a hybrid intelligent optimizer," Applied Energy, Elsevier, vol. 304(C).
    11. Ravi Kumar Pandit & Davide Astolfi & Isidro Durazo Cardenas, 2023. "A Review of Predictive Techniques Used to Support Decision Making for Maintenance Operations of Wind Turbines," Energies, MDPI, vol. 16(4), pages 1-17, February.
    12. Davide Astolfi, 2023. "Wind Turbine Drivetrain Condition Monitoring through SCADA-Collected Temperature Data: Discussion of Selected Recent Papers," Energies, MDPI, vol. 16(9), pages 1-4, April.
    13. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    14. Liang, Tao & Zhao, Qing & Lv, Qingzhao & Sun, Hexu, 2021. "A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers," Energy, Elsevier, vol. 230(C).
    15. Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
    16. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
    17. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    18. Khaled, Mohamed & Ibrahim, Mostafa M. & Abdel Hamed, Hesham E. & AbdelGwad, Ahmed F., 2019. "Investigation of a small Horizontal–Axis wind turbine performance with and without winglet," Energy, Elsevier, vol. 187(C).
    19. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    20. Andrés Ruiz & Florin Onea & Eugen Rusu, 2020. "Study Concerning the Expected Dynamics of the Wind Energy Resources in the Iberian Nearshore," Energies, MDPI, vol. 13(18), pages 1-25, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:165-:d:1013178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.