IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5268-d867350.html
   My bibliography  Save this article

New Taxonomy of Climate Adaptive Building Shell Office Buildings: Focus on User–Façade Interaction Scenarios

Author

Listed:
  • Nazgol Hafizi

    (Faculty of Architecture, Department of Architecture, Eastern Mediterranean University, North Cyprus via Mersin 10, Famagusta 99628, Turkey)

  • Sadiye Mujdem Vural

    (Faculty of Architecture, Department of Architecture, Eastern Mediterranean University, North Cyprus via Mersin 10, Famagusta 99628, Turkey)

Abstract

As one of the most critical considerations in the contemporary era, sustainability heightens the need to find more suitable solutions for architectural designs. Climate adaptive building shells (CABS) are among the most promising alternatives for achieving sustainability goals by reducing energy consumption. Regardless of technological developments, this type of system has a reputation for increasing the distraction of occupants and consequently decreasing their satisfaction level. This research has been developed to focus on the occupant-centric study rather than technological advancements of the system. This study introduces the user–façade interaction scenarios and applies this classification on CABS office buildings. The purpose of this study is to introduce a new multi-domain taxonomy for CABS office buildings and update the database of this system by adding a new variable focusing on occupants. The study was designed on the foundation found with PRISMA methodology which highlights the lack of occupant-centric research on CABS. The research carried on as a qualitative method with an inductive approach which with the literature review introduced the user–façade interaction scenarios and the latest update of the CABS database. Accordingly, the office cases were categorized within different climatic zones, and later as a correlational study, each case was studied based on user–façade interaction scenarios. Analysis of case databases according to user–façade interaction types clears the lack of development in the majority of scenarios. Lastly, the study concluded by introducing a novel multi-domain taxonomy of CABS office buildings by considering user–façade interaction scenarios. The further value of this study is to be a foundation for future studies on CABS office buildings by considering the occupants as a primary element of the research.

Suggested Citation

  • Nazgol Hafizi & Sadiye Mujdem Vural, 2022. "New Taxonomy of Climate Adaptive Building Shell Office Buildings: Focus on User–Façade Interaction Scenarios," Energies, MDPI, vol. 15(14), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5268-:d:867350
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5268/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5268/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Naylor, Sophie & Gillott, Mark & Lau, Tom, 2018. "A review of occupant-centric building control strategies to reduce building energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 1-10.
    2. Jung, Wooyoung & Jazizadeh, Farrokh, 2019. "Human-in-the-loop HVAC operations: A quantitative review on occupancy, comfort, and energy-efficiency dimensions," Applied Energy, Elsevier, vol. 239(C), pages 1471-1508.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael P. Voigt & Daniel Roth & Matthias Kreimeyer, 2023. "Decision Support for Defining Adaptive Façade Design Goals in the Early Design Phase," Energies, MDPI, vol. 16(8), pages 1-28, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Nan & Aviv, Dorit & Guo, Hongshan & Braham, William W., 2021. "Measuring the right factors: A review of variables and models for thermal comfort and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Tarragona, Joan & Pisello, Anna Laura & Fernández, Cèsar & Cabeza, Luisa F. & Payá, Jorge & Marchante-Avellaneda, Javier & de Gracia, Alvaro, 2022. "Analysis of thermal energy storage tanks and PV panels combinations in different buildings controlled through model predictive control," Energy, Elsevier, vol. 239(PC).
    3. Nilofar Asim & Marzieh Badiei & Masita Mohammad & Halim Razali & Armin Rajabi & Lim Chin Haw & Mariyam Jameelah Ghazali, 2022. "Sustainability of Heating, Ventilation and Air-Conditioning (HVAC) Systems in Buildings—An Overview," IJERPH, MDPI, vol. 19(2), pages 1-16, January.
    4. Shim, Jisoo & Song, Doosam, 2025. "Unveiling energy inefficiencies: A study on building energy consumption in single-person households," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    5. Filipe Soares & André Madureira & Andreu Pagès & António Barbosa & António Coelho & Fernando Cassola & Fernando Ribeiro & João Viana & José Andrade & Marina Dorokhova & Nélson Morais & Nicolas Wyrsch , 2021. "FEEdBACk: An ICT-Based Platform to Increase Energy Efficiency through Buildings’ Consumer Engagement," Energies, MDPI, vol. 14(6), pages 1-43, March.
    6. Sarah O’Connell & Marcus Martin Keane, 2021. "Development of a Framework for Activation of Aggregator Led Flexibility," Energies, MDPI, vol. 14(16), pages 1-15, August.
    7. Calise, F. & Cappiello, F. & D'Agostino, D. & Vicidomini, M., 2021. "Heat metering for residential buildings: A novel approach through dynamic simulations for the calculation of energy and economic savings," Energy, Elsevier, vol. 234(C).
    8. Amal Azzi & Mohamed Tabaa & Badr Chegari & Hanaa Hachimi, 2024. "Balancing Sustainability and Comfort: A Holistic Study of Building Control Strategies That Meet the Global Standards for Efficiency and Thermal Comfort," Sustainability, MDPI, vol. 16(5), pages 1-36, March.
    9. Eunji Kim & Yoonhee Ha, 2021. "Vitalization Strategies for the Building Energy Management System (BEMS) Industry Ecosystem Based on AHP Analysis," Energies, MDPI, vol. 14(9), pages 1-16, April.
    10. Yan, Biao & Yang, Wansheng & He, Fuquan & Zeng, Wenhao, 2023. "Occupant behavior impact in buildings and the artificial intelligence-based techniques and data-driven approach solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    11. Gao, Zhikun & Yu, Junqi & Zhao, Anjun & Hu, Qun & Yang, Siyuan, 2022. "A hybrid method of cooling load forecasting for large commercial building based on extreme learning machine," Energy, Elsevier, vol. 238(PC).
    12. Daniel Plörer & Sascha Hammes & Martin Hauer & Vincent van Karsbergen & Rainer Pfluger, 2021. "Control Strategies for Daylight and Artificial Lighting in Office Buildings—A Bibliometrically Assisted Review," Energies, MDPI, vol. 14(13), pages 1-18, June.
    13. Wei, Shuangyu & Tien, Paige Wenbin & Calautit, John Kaiser & Wu, Yupeng & Boukhanouf, Rabah, 2020. "Vision-based detection and prediction of equipment heat gains in commercial office buildings using a deep learning method," Applied Energy, Elsevier, vol. 277(C).
    14. Muhammad Saidu Aliero & Muhammad Asif & Imran Ghani & Muhammad Fermi Pasha & Seung Ryul Jeong, 2022. "Systematic Review Analysis on Smart Building: Challenges and Opportunities," Sustainability, MDPI, vol. 14(5), pages 1-28, March.
    15. Barone, G. & Buonomano, A. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Russo, G., 2023. "A new thermal comfort model based on physiological parameters for the smart design and control of energy-efficient HVAC systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    16. Pang, Zhihong & Chen, Yan & Zhang, Jian & O'Neill, Zheng & Cheng, Hwakong & Dong, Bing, 2020. "Nationwide HVAC energy-saving potential quantification for office buildings with occupant-centric controls in various climates," Applied Energy, Elsevier, vol. 279(C).
    17. Yu, Junqi & Liu, Qite & Zhao, Anjun & Chen, Shiyu & Gao, Zhikun & Wang, Fu & Zhang, Rui, 2021. "A distributed optimization algorithm for the dynamic hydraulic balance of chilled water pipe network in air-conditioning system," Energy, Elsevier, vol. 223(C).
    18. Saman Nikkhah & Adib Allahham & Janusz W. Bialek & Sara L. Walker & Damian Giaouris & Simira Papadopoulou, 2021. "Active Participation of Buildings in the Energy Networks: Dynamic/Operational Models and Control Challenges," Energies, MDPI, vol. 14(21), pages 1-28, November.
    19. Kristian Fabbri & Jacopo Gaspari & Laura Vandi, 2019. "Indoor Thermal Comfort of Pregnant Women in Hospital: A Case Study Evidence," Sustainability, MDPI, vol. 11(23), pages 1-24, November.
    20. Anna Kubule & Jānis Kramens & Madara Bimbere & Nerijus Pedišius & Dagnija Blumberga, 2024. "Trends for Stirling Engines in Households: A Systematic Literature Review," Energies, MDPI, vol. 17(2), pages 1-17, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5268-:d:867350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.