IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5049-d860296.html
   My bibliography  Save this article

A Study Comparing the Subsurface Vortex Characteristics in Pump Sumps

Author

Listed:
  • Sangyoon Kim

    (Department of Mechanical Engineering, Graduate School, Korea Maritime and Ocean University, 727, Taejong-ro, Yeongdo-gu, Busan 49112, Korea
    High Turbo Machinery (HTM) Co., 2, Busandaehak-ro, 63beon-gil, Geumjeong-gu, Busan 46241, Korea)

  • Changgu Kim

    (Flowithus Co., Ltd., 107, Gwahaksandan 1-ro, Gangseo-gu, Busan 46742, Korea)

  • Byungha Kim

    (Flowithus Co., Ltd., 107, Gwahaksandan 1-ro, Gangseo-gu, Busan 46742, Korea)

  • Hyunjun Jang

    (High Turbo Machinery (HTM) Co., 2, Busandaehak-ro, 63beon-gil, Geumjeong-gu, Busan 46241, Korea
    Department of Mechanical Engineering, Pusan National University, Busan 43241, Korea)

  • Incheol Kim

    (Green Energy Institute, 177, Samhyangcheon-ro, Mokpo City 58656, Korea)

  • Young-Ho Lee

    (Division of Mechanical Engineering, Korea Maritime and Ocean University, 727, Taejong-ro, Yeongdo-gu, Busan 49112, Korea)

Abstract

The vortex generated around the suction region of the pump sump causes problems such as damage to the pump, increased maintenance costs, and failure to supply coolant smoothly. Therefore, analyzing vortices is essential in pump sump design. However, the CFD analysis alone is insufficient in pump sumps vortex analysis since the reliability of the results is doubtful in scaled model tests. This study conducted the model test to validate a suitable CFD simulation method by identifying the Type 2 vortex among the three types of subsurface vortices. The dye test and PIV technology were used to visualize the Type 2 subsurface vortices, whereas the PIV vorticity results were then compared to the CFD results. The average vorticity of 60.2 (1/s) was identified as the reference level of Type 2 subsurface vortices formation by mapping the dye test results with the PIV vorticity results. Furthermore, the average vorticities of 84.63 (1/s) and 85.15 (1/s) were recorded in the presence of Type 2 subsurface vortices in PIV and CFD, respectively, and these values can be applied to the designing of pump sumps.

Suggested Citation

  • Sangyoon Kim & Changgu Kim & Byungha Kim & Hyunjun Jang & Incheol Kim & Young-Ho Lee, 2022. "A Study Comparing the Subsurface Vortex Characteristics in Pump Sumps," Energies, MDPI, vol. 15(14), pages 1-12, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5049-:d:860296
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5049/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5049/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miao Guo & Zhigang Zuo & Shuhong Liu & Huijun Zou & Baoyu Chen & Deyou Li, 2020. "Experimental Vortex Flow Patterns in the Primary and Secondary Pump Intakes of a Model Underground Pumping Station," Energies, MDPI, vol. 13(7), pages 1-20, April.
    2. Ge, Mingming & Manikkam, Pratulya & Ghossein, Joe & Kumar Subramanian, Roshan & Coutier-Delgosha, Olivier & Zhang, Guangjian, 2022. "Dynamic mode decomposition to classify cavitating flow regimes induced by thermodynamic effects," Energy, Elsevier, vol. 254(PC).
    3. Faizal, Mohammed & Rafiuddin Ahmed, M. & Lee, Young-Ho, 2010. "On utilizing the orbital motion in water waves to drive a Savonius rotor," Renewable Energy, Elsevier, vol. 35(1), pages 164-169.
    4. Virgel M. Arocena & Binoe E. Abuan & Joseph Gerard T. Reyes & Paul L. Rodgers & Louis Angelo M. Danao, 2021. "Numerical Investigation of the Performance of a Submersible Pump: Prediction of Recirculation, Vortex Formation, and Swirl Resulting from Off-Design Operating Conditions," Energies, MDPI, vol. 14(16), pages 1-21, August.
    5. Virgel M. Arocena & Binoe E. Abuan & Joseph Gerard T. Reyes & Paul L. Rodgers & Louis Angelo M. Danao, 2020. "Reduction of Entrained Vortices in Submersible Pump Suction Lines Using Numerical Simulations," Energies, MDPI, vol. 13(22), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaijie Ye & Denghui He & Lin Zhao & Pengcheng Guo, 2022. "Influence of Fluid Viscosity on Cavitation Characteristics of a Helico-Axial Multiphase Pump (HAMP)," Energies, MDPI, vol. 15(21), pages 1-14, November.
    2. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).
    3. Halliday, J. Ross & Dorrell, David G. & Wood, Alan R., 2011. "An application of the Fast Fourier Transform to the short-term prediction of sea wave behaviour," Renewable Energy, Elsevier, vol. 36(6), pages 1685-1692.
    4. Zhang, Bowen & Cheng, Li & Jiao, Weixuan & Zhang, Di, 2023. "Experimental and statistical analysis of the flap gate energy loss and pressure fluctuation spatiotemporal characteristics of a mixed-flow pump device," Energy, Elsevier, vol. 272(C).
    5. Tutar, Mustafa & Veci, Inaki, 2016. "Performance analysis of a horizontal axis 3-bladed Savonius type wave turbine in an experimental wave flume (EWF)," Renewable Energy, Elsevier, vol. 86(C), pages 8-25.
    6. Leonid Plotnikov & Nikita Grigoriev & Leonid Osipov & Vladimir Slednev & Vladislav Shurupov, 2022. "Stationary Gas Dynamics and Heat Transfer of Turbulent Flows in Straight Pipes at Different Turbulence Intensity," Energies, MDPI, vol. 15(19), pages 1-13, October.
    7. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 108(C), pages 502-522.
    8. Yun Long & Mingyu Zhang & Zhen Zhou & Jinqing Zhong & Ce An & Yong Chen & Churui Wan & Rongsheng Zhu, 2023. "Research on Cavitation Wake Vortex Structures Near the Impeller Tip of a Water-Jet Pump," Energies, MDPI, vol. 16(4), pages 1-20, February.
    9. Stylianos Argyrios Pitsikoulis & Sravya Tekumalla & Anurag Sharma & Wai Leong Eugene Wong & Serkan Turkmen & Pengfei Liu, 2023. "Cavitation Hydrodynamic Performance of 3-D Printed Highly Skewed Stainless Steel Tidal Turbine Rotors," Energies, MDPI, vol. 16(9), pages 1-26, April.
    10. Kang Xiao & Zhengdao Wang & Hui Yang & Yikun Wei, 2022. "Spatiotemporal Evolution and Fluctuation Characteristics of a Centrifugal Compressor under Near-Stall Conditions and High Mass-Flow Rate," Energies, MDPI, vol. 16(1), pages 1-20, December.
    11. Aleksandr Zharkovskii & Dmitry Svoboda & Igor Borshchev & Arsentiy Klyuyev & Evgeniy Ivanov & Sergey Shutsky, 2023. "Axial-Flow Pump with Enhanced Cavitation Erosion Resistance," Energies, MDPI, vol. 16(3), pages 1-13, January.
    12. Zullah, Mohammed Asid & Lee, Young-Ho, 2013. "Performance evaluation of a direct drive wave energy converter using CFD," Renewable Energy, Elsevier, vol. 49(C), pages 237-241.
    13. Huahuang Lai & Haoshu Wang & Zhen Zhou & Rongsheng Zhu & Yun Long, 2023. "Research on Cavitation Performance of Bidirectional Integrated Pump Gate," Energies, MDPI, vol. 16(19), pages 1-18, September.
    14. Alexey Abdrashitov & Alexander Gavrilov & Evgeny Marfin & Vladimir Panchenko & Andrey Kovalev & Vadim Bolshev & Julia Karaeva, 2023. "Cavitation Reactor for Pretreatment of Liquid Agricultural Waste," Agriculture, MDPI, vol. 13(6), pages 1-15, June.
    15. Xiaoke He & Yu Song & Kaipeng Wu & Asad Ali & Chunhao Shen & Qiaorui Si, 2022. "Intelligent Identification of Cavitation State of Centrifugal Pump Based on Support Vector Machine," Energies, MDPI, vol. 15(23), pages 1-17, November.
    16. Virgel M. Arocena & Binoe E. Abuan & Joseph Gerard T. Reyes & Paul L. Rodgers & Louis Angelo M. Danao, 2021. "Numerical Investigation of the Performance of a Submersible Pump: Prediction of Recirculation, Vortex Formation, and Swirl Resulting from Off-Design Operating Conditions," Energies, MDPI, vol. 14(16), pages 1-21, August.
    17. Khan, Zain Ullah & Ali, Zaib & Uddin, Emad, 2022. "Performance enhancement of vertical axis hydrokinetic turbine using novel blade profile," Renewable Energy, Elsevier, vol. 188(C), pages 801-818.
    18. Kuo-Tsai Wu & Kuo-Hao Lo & Ruey-Chy Kao & Sheng-Jye Hwang, 2022. "Numerical and Experimental Investigation of the Effect of Design Parameters on Savonius-Type Hydrokinetic Turbine Performance," Energies, MDPI, vol. 15(5), pages 1-19, March.
    19. Tianhao Wang & Linya Chen, 2023. "Thermodynamic Behavior and Energy Transformation Mechanism of the Multi-Period Evolution of Cavitation Bubbles Collapsing near a Rigid Wall: A Numerical Study," Energies, MDPI, vol. 16(3), pages 1-21, January.
    20. Lei Xu & Tao Jiang & Chuan Wang & Dongtao Ji & Wei Shi & Bo Xu & Weigang Lu, 2022. "Experiment and Numerical Simulation on Hydraulic Loss and Flow Pattern of Low Hump Outlet Conduit with Different Inlet Water Rotation Speeds," Energies, MDPI, vol. 15(15), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5049-:d:860296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.