IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8907-d983751.html
   My bibliography  Save this article

Intelligent Identification of Cavitation State of Centrifugal Pump Based on Support Vector Machine

Author

Listed:
  • Xiaoke He

    (School of Energy and Power Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China)

  • Yu Song

    (School of Energy and Power Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China)

  • Kaipeng Wu

    (Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China)

  • Asad Ali

    (Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China)

  • Chunhao Shen

    (Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China)

  • Qiaorui Si

    (Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China)

Abstract

In order to perform intelligent identification of the various stages of cavitation development, a micro high-speed centrifugal pump was used as a research object for vibration signal analysis and feature extraction for normal, incipient cavitation, cavitation and severely cavitated operating states of the pump at different temperatures (25 °C, 50 °C and 70 °C), based on support vector machines to classify and identify the eigenvalues in different cavitation states. The results of the study showed that the highest recognition rate of the individual eigenvalues of the time domain signals, followed by time frequency domain signals and finally frequency domain signals, was achieved in the binary classification of whether cavitation occurred or not. In the multi-classification recognition of the cavitation state, the eigenvalues of the time domain signals of the four monitoring points, the time frequency domain signals of the monitoring points in the X-direction of the inlet pipe and the Y-direction of the inlet pipe are combined, and the combined eigenvalues can achieve a multi-classification recognition rate of more than 94% for the cavitation state at different temperatures, which is highly accurate for the recognition of the cavitation state of centrifugal pumps.

Suggested Citation

  • Xiaoke He & Yu Song & Kaipeng Wu & Asad Ali & Chunhao Shen & Qiaorui Si, 2022. "Intelligent Identification of Cavitation State of Centrifugal Pump Based on Support Vector Machine," Energies, MDPI, vol. 15(23), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8907-:d:983751
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8907/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8907/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ge, Mingming & Manikkam, Pratulya & Ghossein, Joe & Kumar Subramanian, Roshan & Coutier-Delgosha, Olivier & Zhang, Guangjian, 2022. "Dynamic mode decomposition to classify cavitating flow regimes induced by thermodynamic effects," Energy, Elsevier, vol. 254(PC).
    2. Asad Ali & Jianping Yuan & Fanjie Deng & Biaobiao Wang & Liangliang Liu & Qiaorui Si & Noman Ali Buttar, 2021. "Research Progress and Prospects of Multi-Stage Centrifugal Pump Capability for Handling Gas–Liquid Multiphase Flow: Comparison and Empirical Model Validation," Energies, MDPI, vol. 14(4), pages 1-34, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaijie Ye & Denghui He & Lin Zhao & Pengcheng Guo, 2022. "Influence of Fluid Viscosity on Cavitation Characteristics of a Helico-Axial Multiphase Pump (HAMP)," Energies, MDPI, vol. 15(21), pages 1-14, November.
    2. Leonid Plotnikov & Nikita Grigoriev & Leonid Osipov & Vladimir Slednev & Vladislav Shurupov, 2022. "Stationary Gas Dynamics and Heat Transfer of Turbulent Flows in Straight Pipes at Different Turbulence Intensity," Energies, MDPI, vol. 15(19), pages 1-13, October.
    3. Yun Long & Mingyu Zhang & Zhen Zhou & Jinqing Zhong & Ce An & Yong Chen & Churui Wan & Rongsheng Zhu, 2023. "Research on Cavitation Wake Vortex Structures Near the Impeller Tip of a Water-Jet Pump," Energies, MDPI, vol. 16(4), pages 1-20, February.
    4. Stylianos Argyrios Pitsikoulis & Sravya Tekumalla & Anurag Sharma & Wai Leong Eugene Wong & Serkan Turkmen & Pengfei Liu, 2023. "Cavitation Hydrodynamic Performance of 3-D Printed Highly Skewed Stainless Steel Tidal Turbine Rotors," Energies, MDPI, vol. 16(9), pages 1-26, April.
    5. Sangyoon Kim & Changgu Kim & Byungha Kim & Hyunjun Jang & Incheol Kim & Young-Ho Lee, 2022. "A Study Comparing the Subsurface Vortex Characteristics in Pump Sumps," Energies, MDPI, vol. 15(14), pages 1-12, July.
    6. Kang Xiao & Zhengdao Wang & Hui Yang & Yikun Wei, 2022. "Spatiotemporal Evolution and Fluctuation Characteristics of a Centrifugal Compressor under Near-Stall Conditions and High Mass-Flow Rate," Energies, MDPI, vol. 16(1), pages 1-20, December.
    7. Aleksandr Zharkovskii & Dmitry Svoboda & Igor Borshchev & Arsentiy Klyuyev & Evgeniy Ivanov & Sergey Shutsky, 2023. "Axial-Flow Pump with Enhanced Cavitation Erosion Resistance," Energies, MDPI, vol. 16(3), pages 1-13, January.
    8. Mehrdad Massoudi, 2021. "Mathematical Modeling of Fluid Flow and Heat Transfer in Petroleum Industries and Geothermal Applications 2020," Energies, MDPI, vol. 14(16), pages 1-4, August.
    9. Huahuang Lai & Haoshu Wang & Zhen Zhou & Rongsheng Zhu & Yun Long, 2023. "Research on Cavitation Performance of Bidirectional Integrated Pump Gate," Energies, MDPI, vol. 16(19), pages 1-18, September.
    10. Alexey Abdrashitov & Alexander Gavrilov & Evgeny Marfin & Vladimir Panchenko & Andrey Kovalev & Vadim Bolshev & Julia Karaeva, 2023. "Cavitation Reactor for Pretreatment of Liquid Agricultural Waste," Agriculture, MDPI, vol. 13(6), pages 1-15, June.
    11. Tianhao Wang & Linya Chen, 2023. "Thermodynamic Behavior and Energy Transformation Mechanism of the Multi-Period Evolution of Cavitation Bubbles Collapsing near a Rigid Wall: A Numerical Study," Energies, MDPI, vol. 16(3), pages 1-21, January.
    12. Lei Xu & Tao Jiang & Chuan Wang & Dongtao Ji & Wei Shi & Bo Xu & Weigang Lu, 2022. "Experiment and Numerical Simulation on Hydraulic Loss and Flow Pattern of Low Hump Outlet Conduit with Different Inlet Water Rotation Speeds," Energies, MDPI, vol. 15(15), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8907-:d:983751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.