IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3100-d1677565.html
   My bibliography  Save this article

Numerical Simulation of Two-Phase Boiling Heat Transfer in a 65 mm Horizontal Tube for Enhanced Heavy Oil Recovery

Author

Listed:
  • Genying Gao

    (Oil Production Technology Research Institute, PetroChina Xinjiang Oilfield Company, Karamay 834000, China)

  • Zicheng Wang

    (Oil Production Technology Research Institute, PetroChina Xinjiang Oilfield Company, Karamay 834000, China)

  • Gaoqiao Li

    (Oil Production Technology Research Institute, PetroChina Xinjiang Oilfield Company, Karamay 834000, China)

  • Chizhong Wang

    (State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Lei Deng

    (State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

To enhance the steam parameters of steam injection boilers during the thermal recovery of heavy oil while ensuring the safe and stable operation of boiler pipelines, this study conducted two-phase flow boiling numerical simulations in a horizontal heated tube with an inner diameter of 65 mm, using water and water vapor as working fluids. The analysis focused on the gas–liquid phase distribution, temperature profiles, near-wall fluid velocity, and pressure drop along both the axial and radial directions of the tube. Furthermore, the effects of heat flux density, mass flow rate, and inlet subcooling on these parameters were systematically investigated. The results reveal that higher heat fluxes intensify the velocity difference between the upper and lower tube walls and enlarge the temperature gradient across the wall surface. A reduction in mass flow rate increases the gas phase fraction within the tube and causes the occurrence of identical flow patterns at earlier axial positions. Additionally, the onset of nucleate boiling shifts upstream, accompanied by an increase and upstream movement of the wall’s maximum temperature. An increase in inlet subcooling prolongs the time required for the working fluid mixture to reach saturation, thereby decreasing the gas phase fraction and delaying the appearance of the same flow patterns. Finally, preventive and control strategies for ensuring the safe operation of steam injection boiler pipelines during heavy oil recovery are proposed from the perspective of flow pattern regulation.

Suggested Citation

  • Genying Gao & Zicheng Wang & Gaoqiao Li & Chizhong Wang & Lei Deng, 2025. "Numerical Simulation of Two-Phase Boiling Heat Transfer in a 65 mm Horizontal Tube for Enhanced Heavy Oil Recovery," Energies, MDPI, vol. 18(12), pages 1-28, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3100-:d:1677565
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3100/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3100/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ge, Mingming & Manikkam, Pratulya & Ghossein, Joe & Kumar Subramanian, Roshan & Coutier-Delgosha, Olivier & Zhang, Guangjian, 2022. "Dynamic mode decomposition to classify cavitating flow regimes induced by thermodynamic effects," Energy, Elsevier, vol. 254(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaijie Ye & Denghui He & Lin Zhao & Pengcheng Guo, 2022. "Influence of Fluid Viscosity on Cavitation Characteristics of a Helico-Axial Multiphase Pump (HAMP)," Energies, MDPI, vol. 15(21), pages 1-14, November.
    2. Leonid Plotnikov & Nikita Grigoriev & Leonid Osipov & Vladimir Slednev & Vladislav Shurupov, 2022. "Stationary Gas Dynamics and Heat Transfer of Turbulent Flows in Straight Pipes at Different Turbulence Intensity," Energies, MDPI, vol. 15(19), pages 1-13, October.
    3. Yun Long & Mingyu Zhang & Zhen Zhou & Jinqing Zhong & Ce An & Yong Chen & Churui Wan & Rongsheng Zhu, 2023. "Research on Cavitation Wake Vortex Structures Near the Impeller Tip of a Water-Jet Pump," Energies, MDPI, vol. 16(4), pages 1-20, February.
    4. Stylianos Argyrios Pitsikoulis & Sravya Tekumalla & Anurag Sharma & Wai Leong Eugene Wong & Serkan Turkmen & Pengfei Liu, 2023. "Cavitation Hydrodynamic Performance of 3-D Printed Highly Skewed Stainless Steel Tidal Turbine Rotors," Energies, MDPI, vol. 16(9), pages 1-26, April.
    5. Sangyoon Kim & Changgu Kim & Byungha Kim & Hyunjun Jang & Incheol Kim & Young-Ho Lee, 2022. "A Study Comparing the Subsurface Vortex Characteristics in Pump Sumps," Energies, MDPI, vol. 15(14), pages 1-12, July.
    6. Kang Xiao & Zhengdao Wang & Hui Yang & Yikun Wei, 2022. "Spatiotemporal Evolution and Fluctuation Characteristics of a Centrifugal Compressor under Near-Stall Conditions and High Mass-Flow Rate," Energies, MDPI, vol. 16(1), pages 1-20, December.
    7. Aleksandr Zharkovskii & Dmitry Svoboda & Igor Borshchev & Arsentiy Klyuyev & Evgeniy Ivanov & Sergey Shutsky, 2023. "Axial-Flow Pump with Enhanced Cavitation Erosion Resistance," Energies, MDPI, vol. 16(3), pages 1-13, January.
    8. Huahuang Lai & Haoshu Wang & Zhen Zhou & Rongsheng Zhu & Yun Long, 2023. "Research on Cavitation Performance of Bidirectional Integrated Pump Gate," Energies, MDPI, vol. 16(19), pages 1-18, September.
    9. Alexey Abdrashitov & Alexander Gavrilov & Evgeny Marfin & Vladimir Panchenko & Andrey Kovalev & Vadim Bolshev & Julia Karaeva, 2023. "Cavitation Reactor for Pretreatment of Liquid Agricultural Waste," Agriculture, MDPI, vol. 13(6), pages 1-15, June.
    10. Xiaoke He & Yu Song & Kaipeng Wu & Asad Ali & Chunhao Shen & Qiaorui Si, 2022. "Intelligent Identification of Cavitation State of Centrifugal Pump Based on Support Vector Machine," Energies, MDPI, vol. 15(23), pages 1-17, November.
    11. Tianhao Wang & Linya Chen, 2023. "Thermodynamic Behavior and Energy Transformation Mechanism of the Multi-Period Evolution of Cavitation Bubbles Collapsing near a Rigid Wall: A Numerical Study," Energies, MDPI, vol. 16(3), pages 1-21, January.
    12. Lei Xu & Tao Jiang & Chuan Wang & Dongtao Ji & Wei Shi & Bo Xu & Weigang Lu, 2022. "Experiment and Numerical Simulation on Hydraulic Loss and Flow Pattern of Low Hump Outlet Conduit with Different Inlet Water Rotation Speeds," Energies, MDPI, vol. 15(15), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3100-:d:1677565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.