IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2429-d542583.html
   My bibliography  Save this article

Design and Energy Analysis of a Solar Desiccant Evaporative Cooling System with Built-In Daily Energy Storage

Author

Listed:
  • Fahid Riaz

    (Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
    Department of Mechanical Engineering, University of Engineering and Technology Lahore, Lahore 54000, Pakistan
    These authors contributed equally.)

  • Muhammad Abdul Qyyum

    (School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Korea
    These authors contributed equally.)

  • Awais Bokhari

    (Sustainable Process Integration Laboratory–SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology–VUT Brno, Technická 2896/2, 616 69 Brno, Czech Republic
    Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Punjab 54000, Pakistan)

  • Jiří Jaromír Klemeš

    (Sustainable Process Integration Laboratory–SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology–VUT Brno, Technická 2896/2, 616 69 Brno, Czech Republic)

  • Muhammad Usman

    (Department of Mechanical Engineering, University of Engineering and Technology Lahore, Lahore 54000, Pakistan)

  • Muhammad Asim

    (Research Centre for Green Energy, Transport and Building (RCGETB), School of Professional Education and Executive Development, College of Professional & Continuing Education, The Hong Kong Polytechnic University, Kowloon 100077, Hong Kong)

  • Muhammad Rizwan Awan

    (Department of Mechanical, Hydraulics and Aeronautics, Universitat Politechnicia De Catalunya (UPC), 08800 Barcelona, Spain)

  • Muhammad Imran

    (School of Mechanical, Biomedical and Design Engineering, College of Engineering and Applied Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK)

  • Moonyong Lee

    (School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Korea)

Abstract

Heat storage with thermochemical (TC) materials is a promising technology for solar energy storage. In this paper, a solar-driven desiccant evaporative cooling (DEC) system for air-conditioning is proposed, which converts solar heat energy into cooling with built-in daily storage. The system utilises thermochemical heat storage along with the DEC technology in a unique way. Magnesium Chloride (MgCl 2 ·6H 2 O) has been used, which serves as both a desiccant and a thermochemical heat storage medium. The system has been designed for the subtropical climate of Lahore, Pakistan, for a bedroom with 8 h of cooling requirements during the night. MATLAB has been employed for modelling the system. The simulation results show that 57 kg of magnesium chloride is sufficient to meet 98.8% of cooling demand for the entire month of July at an elevated cooling requirement. It was found that the cooling output of the system increased with increasing heat exchanger effectiveness. The heat exchangers’ effectiveness was increased from 0.7 to 0.8, with the solar fraction increased from 70.4% to 82.44%. The cooled air supplied to the building meets the fresh air requirements for proper ventilation.

Suggested Citation

  • Fahid Riaz & Muhammad Abdul Qyyum & Awais Bokhari & Jiří Jaromír Klemeš & Muhammad Usman & Muhammad Asim & Muhammad Rizwan Awan & Muhammad Imran & Moonyong Lee, 2021. "Design and Energy Analysis of a Solar Desiccant Evaporative Cooling System with Built-In Daily Energy Storage," Energies, MDPI, vol. 14(9), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2429-:d:542583
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2429/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2429/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fahid Riaz & Kah Hoe Tan & Muhammad Farooq & Muhammad Imran & Poh Seng Lee, 2020. "Energy Analysis of a Novel Ejector-Compressor Cooling Cycle Driven by Electricity and Heat (Waste Heat or Solar Energy)," Sustainability, MDPI, vol. 12(19), pages 1-21, October.
    2. Rady, M.A. & Huzayyin, A.S. & Arquis, E. & Monneyron, P. & Lebot, C. & Palomo, E., 2009. "Study of heat and mass transfer in a dehumidifying desiccant bed with macro-encapsulated phase change materials," Renewable Energy, Elsevier, vol. 34(3), pages 718-726.
    3. Ramadas Narayanan & Edward Halawa & Sanjeev Jain, 2018. "Performance Characteristics of Solid-Desiccant Evaporative Cooling Systems," Energies, MDPI, vol. 11(10), pages 1-14, September.
    4. Klemeš, Jiří Jaromír & Fan, Yee Van & Jiang, Peng, 2020. "The energy and environmental footprints of COVID-19 fighting measures – PPE, disinfection, supply chains," Energy, Elsevier, vol. 211(C).
    5. Mao, Ning & Pan, Dongmei & Li, Zhao & Xu, Yingjie & Song, Mengjie & Deng, Shiming, 2017. "A numerical study on influences of building envelope heat gain on operating performances of a bed-based task/ambient air conditioning (TAC) system in energy saving and thermal comfort," Applied Energy, Elsevier, vol. 192(C), pages 213-221.
    6. Paksoy, H.O & Andersson, O & Abaci, S & Evliya, H & Turgut, B, 2000. "Heating and cooling of a hospital using solar energy coupled with seasonal thermal energy storage in an aquifer," Renewable Energy, Elsevier, vol. 19(1), pages 117-122.
    7. Chen, Qian & Alrowais, Raid & Burhan, Muhammad & Ybyraiymkul, Doskhan & Shahzad, Muhammad Wakil & Li, Yong & Ng, Kim Choon, 2020. "A self-sustainable solar desalination system using direct spray technology," Energy, Elsevier, vol. 205(C).
    8. Beccali, Marco & Finocchiaro, Pietro & Nocke, Bettina, 2012. "Energy performance evaluation of a demo solar desiccant cooling system with heat recovery for the regeneration of the adsorption material," Renewable Energy, Elsevier, vol. 44(C), pages 40-52.
    9. Lawal, Dahiru U. & Qasem, Naef A.A., 2020. "Humidification-dehumidification desalination systems driven by thermal-based renewable and low-grade energy sources: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    10. Zondag, Herbert & Kikkert, Benjamin & Smeding, Simon & Boer, Robert de & Bakker, Marco, 2013. "Prototype thermochemical heat storage with open reactor system," Applied Energy, Elsevier, vol. 109(C), pages 360-365.
    11. La, D. & Dai, Y.J. & Li, Y. & Tang, Z.Y. & Ge, T.S. & Wang, R.Z., 2013. "An experimental investigation on the integration of two-stage dehumidification and regenerative evaporative cooling," Applied Energy, Elsevier, vol. 102(C), pages 1218-1228.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tauseef Aized & Muhammad Rashid & Fahid Riaz & Ameer Hamza & Hafiz Zahid Nabi & Muhammad Sultan & Waqar Muhammad Ashraf & Jaroslaw Krzywanski, 2022. "Energy and Exergy Analysis of Vapor Compression Refrigeration System with Low-GWP Refrigerants," Energies, MDPI, vol. 15(19), pages 1-22, October.
    2. Farah G. Fahad & Shurooq T. Al-Humairi & Amged T. Al-Ezzi & Hasan Sh. Majdi & Abbas J. Sultan & Thaqal M. Alhuzaymi & Thaar M. Aljuwaya, 2023. "Advancements in Liquid Desiccant Technologies: A Comprehensive Review of Materials, Systems, and Applications," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    3. Andy Felix Jităreanu & Mioara Mihăilă & Ciprian-Ionel Alecu & Alexandru-Dragoș Robu & Gabriela Ignat & Carmen Luiza Costuleanu, 2022. "The Relationship between Environmental Factors, Satisfaction with Life, and Ecological Education: An Impact Analysis from a Sustainability Pillars Perspective," Sustainability, MDPI, vol. 14(17), pages 1-25, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fahid Riaz & Fu Zhi Yam & Muhammad Abdul Qyyum & Muhammad Wakil Shahzad & Muhammad Farooq & Poh Seng Lee & Moonyong Lee, 2021. "Direct Analytical Modeling for Optimal, On-Design Performance of Ejector for Simulating Heat-Driven Systems," Energies, MDPI, vol. 14(10), pages 1-21, May.
    2. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Win-Jet Luo & Dini Faridah & Fikri Rahmat Fasya & Yu-Sheng Chen & Fikri Hizbul Mulki & Utami Nuri Adilah, 2019. "Performance Enhancement of Hybrid Solid Desiccant Cooling Systems by Integrating Solar Water Collectors in Taiwan," Energies, MDPI, vol. 12(18), pages 1-18, September.
    4. Hussein M. Maghrabie & Abdul Ghani Olabi & Ahmed Rezk & Ali Radwan & Abdul Hai Alami & Mohammad Ali Abdelkareem, 2023. "Energy Storage for Water Desalination Systems Based on Renewable Energy Resources," Energies, MDPI, vol. 16(7), pages 1-34, March.
    5. Husham Abdulmalek, Shaymaa & Khalaji Assadi, Morteza & Al-Kayiem, Hussain H. & Gitan, Ali Ahmed, 2018. "A comparative analysis on the uniformity enhancement methods of solar thermal drying," Energy, Elsevier, vol. 148(C), pages 1103-1115.
    6. Fahid Riaz & Kah Hoe Tan & Muhammad Farooq & Muhammad Imran & Poh Seng Lee, 2020. "Energy Analysis of a Novel Ejector-Compressor Cooling Cycle Driven by Electricity and Heat (Waste Heat or Solar Energy)," Sustainability, MDPI, vol. 12(19), pages 1-21, October.
    7. Lo Basso, Gianluigi & de Santoli, Livio & Paiolo, Romano & Losi, Claudio, 2021. "The potential role of trans-critical CO2 heat pumps within a solar cooling system for building services: The hybridised system energy analysis by a dynamic simulation model," Renewable Energy, Elsevier, vol. 164(C), pages 472-490.
    8. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    9. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
    10. Dahiru U. Lawal & Mohamed A. Antar & Atia E. Khalifa, 2021. "Integration of a MSF Desalination System with a HDH System for Brine Recovery," Sustainability, MDPI, vol. 13(6), pages 1-27, March.
    11. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2020. "Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage," Renewable Energy, Elsevier, vol. 157(C), pages 920-940.
    12. Mao, Ning & Hao, Jingyu & He, Tianbiao & Song, Mengjie & Xu, Yingjie & Deng, Shiming, 2019. "PMV-based dynamic optimization of energy consumption for a residential task/ambient air conditioning system in different climate zones," Renewable Energy, Elsevier, vol. 142(C), pages 41-54.
    13. Ramadas Narayanan & Subbu Sethuvenkatraman & Roberto Pippia, 2022. "Energy and Comfort Evaluation of Fresh Air-Based Hybrid Cooling System in Hot and Humid Climates," Energies, MDPI, vol. 15(20), pages 1-13, October.
    14. Muhammad Aziz, 2021. "Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety," Energies, MDPI, vol. 14(18), pages 1-29, September.
    15. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    16. Masoomeh Zeinalnezhad & Abdoulmohammad Gholamzadeh Chofreh & Feybi Ariani Goni & Jiří Jaromír Klemeš & Emelia Sari, 2020. "Simulation and Improvement of Patients’ Workflow in Heart Clinics during COVID-19 Pandemic Using Timed Coloured Petri Nets," IJERPH, MDPI, vol. 17(22), pages 1-18, November.
    17. Liu, Xiao-Hua & Zhang, Tao & Zheng, Yu-Wei & Tu, Rang, 2016. "Performance investigation and exergy analysis of two-stage desiccant wheel systems," Renewable Energy, Elsevier, vol. 86(C), pages 877-888.
    18. Fumey, Benjamin & Weber, Robert & Baldini, Luca, 2023. "Heat transfer constraints and performance mapping of a closed liquid sorption heat storage process," Applied Energy, Elsevier, vol. 335(C).
    19. Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
    20. Tu, Rang & Liu, Xiao-Hua & Jiang, Yi, 2014. "Performance analysis of a two-stage desiccant cooling system," Applied Energy, Elsevier, vol. 113(C), pages 1562-1574.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2429-:d:542583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.