IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i3p718-726.html

Study of heat and mass transfer in a dehumidifying desiccant bed with macro-encapsulated phase change materials

Author

Listed:
  • Rady, M.A.
  • Huzayyin, A.S.
  • Arquis, E.
  • Monneyron, P.
  • Lebot, C.
  • Palomo, E.

Abstract

The present article reports on the feasibility of using encapsulated phase change materials (EPCMs) in the dehumidifying bed of a desiccant cooling system. The mathematical model used to simulate the coupled non-equilibrium heat and moisture transfer processes in the porous composite structure containing the EPCM and desiccant particles is presented. Numerical investigations of heat and mass transfer in a desiccant dehumidifying bed composed of silica gel and EPCM particles have been carried out for different values of process parameters. Careful choices of EPCM volume fraction and thermo physical characteristics have been found to increase the overall effectiveness of the desiccant dehumidifier with negligible loss in the dehumidification efficiency. The air stream exits the desiccant/EPCM bed at relatively lower temperature and slightly higher moisture content than from purely desiccant bed. Desiccant cooling systems with less sensible heating and higher cooling capacity can be obtained by employing EPCM in the dehumidifier.

Suggested Citation

  • Rady, M.A. & Huzayyin, A.S. & Arquis, E. & Monneyron, P. & Lebot, C. & Palomo, E., 2009. "Study of heat and mass transfer in a dehumidifying desiccant bed with macro-encapsulated phase change materials," Renewable Energy, Elsevier, vol. 34(3), pages 718-726.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:3:p:718-726
    DOI: 10.1016/j.renene.2008.04.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108001948
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.04.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Daou, K. & Wang, R.Z. & Xia, Z.Z., 2006. "Desiccant cooling air conditioning: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(2), pages 55-77, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rady, Mohamed, 2009. "Thermal performance of packed bed thermal energy storage units using multiple granular phase change composites," Applied Energy, Elsevier, vol. 86(12), pages 2704-2720, December.
    2. Husham Abdulmalek, Shaymaa & Khalaji Assadi, Morteza & Al-Kayiem, Hussain H. & Gitan, Ali Ahmed, 2018. "A comparative analysis on the uniformity enhancement methods of solar thermal drying," Energy, Elsevier, vol. 148(C), pages 1103-1115.
    3. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Ramzy K., A. & Kadoli, R. & Ashok Babu, T.P., 2011. "Improved utilization of desiccant material in packed bed dehumidifier using composite particles," Renewable Energy, Elsevier, vol. 36(2), pages 732-742.
    5. Fahid Riaz & Muhammad Abdul Qyyum & Awais Bokhari & Jiří Jaromír Klemeš & Muhammad Usman & Muhammad Asim & Muhammad Rizwan Awan & Muhammad Imran & Moonyong Lee, 2021. "Design and Energy Analysis of a Solar Desiccant Evaporative Cooling System with Built-In Daily Energy Storage," Energies, MDPI, vol. 14(9), pages 1-17, April.
    6. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.
    7. Jagirdar, Mrinal & Lee, Poh Seng, 2018. "Mathematical modeling and performance evaluation of a desiccant coated fin-tube heat exchanger," Applied Energy, Elsevier, vol. 212(C), pages 401-415.
    8. Yeboah, S.K. & Darkwa, J., 2016. "A critical review of thermal enhancement of packed beds for water vapour adsorption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1500-1520.
    9. Enteria, Napoleon & Mizutani, Kunio, 2011. "The role of the thermally activated desiccant cooling technologies in the issue of energy and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2095-2122, May.
    10. Rao, Zhonghao & Wang, Shuangfeng & Peng, Feifei, 2012. "Self diffusion of the nano-encapsulated phase change materials: A molecular dynamics study," Applied Energy, Elsevier, vol. 100(C), pages 303-308.
    11. Kabeel, A.E. & Abdelgaied, Mohamed, 2018. "Solar energy assisted desiccant air conditioning system with PCM as a thermal storage medium," Renewable Energy, Elsevier, vol. 122(C), pages 632-642.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abou-Ziyan, H. & Abd El-Raheim, D. & Mahmoud, O. & Fatouh, M., 2017. "Performance characteristics of thin-multilayer activated alumina bed," Applied Energy, Elsevier, vol. 190(C), pages 29-42.
    2. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2016. "Solid desiccant air conditioning – A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1451-1469.
    3. Abdel-Salam, Mohamed R.H. & Fauchoux, Melanie & Ge, Gaoming & Besant, Robert W. & Simonson, Carey J., 2014. "Expected energy and economic benefits, and environmental impacts for liquid-to-air membrane energy exchangers (LAMEEs) in HVAC systems: A review," Applied Energy, Elsevier, vol. 127(C), pages 202-218.
    4. Angrisani, Giovanni & Capozzoli, Alfonso & Minichiello, Francesco & Roselli, Carlo & Sasso, Maurizio, 2011. "Desiccant wheel regenerated by thermal energy from a microcogenerator: Experimental assessment of the performances," Applied Energy, Elsevier, vol. 88(4), pages 1354-1365, April.
    5. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    6. Zu, Kan & Qin, Menghao & Cui, Shuqing, 2020. "Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Fekadu, Geleta & Subudhi, Sudhakar, 2018. "Renewable energy for liquid desiccants air conditioning system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 364-379.
    8. Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2014. "Review on solar powered rotary desiccant wheel cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 476-497.
    9. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    10. Sphaier, L.A. & Nóbrega, C.E.L., 2012. "Parametric analysis of components effectiveness on desiccant cooling system performance," Energy, Elsevier, vol. 38(1), pages 157-166.
    11. Chan, Hoy-Yen & Riffat, Saffa B. & Zhu, Jie, 2010. "Review of passive solar heating and cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 781-789, February.
    12. He, Fuquan & Yang, Wansheng & Huang, Sihui & Wang, Xiaofeng & Yan, Biao & Zhao, Xudong, 2025. "Moisture adsorption performance investigation on double layer multi-stage desiccant packed bed under different conditions," Energy, Elsevier, vol. 324(C).
    13. Duan, Zhiyin & Zhan, Changhong & Zhang, Xingxing & Mustafa, Mahmud & Zhao, Xudong & Alimohammadisagvand, Behrang & Hasan, Ala, 2012. "Indirect evaporative cooling: Past, present and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6823-6850.
    14. Shukla, D.L. & Modi, K.V., 2022. "Influence of distinct input parameters on performance indices of dehumidifier, regenerator and on liquid desiccant-operated evaporative cooling system – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Abdel-Salam, Mohamed R.H. & Ge, Gaoming & Fauchoux, Melanie & Besant, Robert W. & Simonson, Carey J., 2014. "State-of-the-art in liquid-to-air membrane energy exchangers (LAMEEs): A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 700-728.
    16. Elsarrag, Esam & Igobo, Opubo N. & Alhorr, Yousef & Davies, Philip A., 2016. "Solar pond powered liquid desiccant evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 124-140.
    17. Yin Bi & Yugang Wang & Xiaoli Ma & Xudong Zhao, 2017. "Investigation on the Energy Saving Potential of Using a Novel Dew Point Cooling System in Data Centres," Energies, MDPI, vol. 10(11), pages 1-21, October.
    18. Xu, Peng & Ma, Xiaoli & Zhao, Xudong & Fancey, Kevin, 2017. "Experimental investigation of a super performance dew point air cooler," Applied Energy, Elsevier, vol. 203(C), pages 761-777.
    19. Pan, Aiqiang & Chen, Yi & Lin, Kaixin & Bai, Shengxi & Ho, Tsz Chung & Tso, Chi Yan, 2024. "Numerical investigations of novel hybrid solid desiccant cooling systems combined with passive radiative cooling panels," Renewable Energy, Elsevier, vol. 226(C).
    20. Oh, Seung Jin & Ng, Kim Choon & Chun, Wongee & Chua, Kian Jon Ernest, 2017. "Evaluation of a dehumidifier with adsorbent coated heat exchangers for tropical climate operations," Energy, Elsevier, vol. 137(C), pages 441-448.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:3:p:718-726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.