IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p981-d498631.html
   My bibliography  Save this article

Success Factors for the Foundation of Municipal Utilities in Germany

Author

Listed:
  • Oliver Wagner

    (Research Group Energy, Transport and Climate Policy, Wuppertal Institute, 42103 Wuppertal, Germany)

  • Kurt Berlo

    (Research Group Energy, Transport and Climate Policy, Wuppertal Institute, 42103 Wuppertal, Germany)

  • Christian Herr

    (Managing Director of the Municipal Office for Waste Disposal, Street Cleaning and Vehicle Fleet in Regensburg, 93053 Regensburg, Germany)

  • Michael Companie

    (Manager at Plenum AG BLUBERRIES GmbH, 81541 Munich, Germany)

Abstract

More than 150 municipal utilities (so-called Stadtwerke) were established in Germany from the beginning of the millennium, bringing the total number of Stadtwerke currently established within the country to approximately 900. With responsibility for more than half of the supply of electricity, gas and heat in Germany, these Stadtwerke play a central role in the transformation of the energy sector, or Energiewende. In addition, due to their local and regional ties, Stadtwerke have a particular role to play in energy politics, the economy and across society. This article focuses on the motives behind, and grounds for, the current wave of newly established Stadtwerke. Further, it discusses the factors that were critical to the successful formation of new Stadtwerke in recent years. The results of our survey indicate that the establishment of municipal Stadtwerke is a suitable measure to implement the energy transition at the local level, whereby the concept of public value has a high level of importance for the local decision-makers. Collaboration and cooperation, as well as a resilience-oriented strategy, are important success factors for new Stadtwerke.

Suggested Citation

  • Oliver Wagner & Kurt Berlo & Christian Herr & Michael Companie, 2021. "Success Factors for the Foundation of Municipal Utilities in Germany," Energies, MDPI, vol. 14(4), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:981-:d:498631
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/981/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/981/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ulrich J. Frey & Sandra Wassermann & Marc Deissenroth-Uhrig, 2020. "Storage Technologies for the Electricity Transition: An Analysis of Actors, Actor Perspectives and Transition Pathways in Germany," Energies, MDPI, vol. 14(1), pages 1-19, December.
    2. David Hall & Emanuele Lobina & Philipp Terhorst, 2013. "Re-municipalisation in the early twenty-first century: water in France and energy in Germany," International Review of Applied Economics, Taylor & Francis Journals, vol. 27(2), pages 193-214, March.
    3. Andrew Cumbers & Sören Becker, 2018. "Making sense of remunicipalisation: theoretical reflections on and political possibilities from Germany’s Rekommumalisierung process," Cambridge Journal of Regions, Economy and Society, Cambridge Political Economy Society, vol. 11(3), pages 503-517.
    4. Oliver Wagner & Thomas Adisorn & Lena Tholen & Dagmar Kiyar, 2020. "Surviving the Energy Transition: Development of a Proposal for Evaluating Sustainable Business Models for Incumbents in Germany’s Electricity Market," Energies, MDPI, vol. 13(3), pages 1-17, February.
    5. Pieper, Frank, 2016. "Finanzwirtschaftliche Erfolgsanalyse deutscher Stadtwerke," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 83952, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    6. May, Gökan & Barletta, Ilaria & Stahl, Bojan & Taisch, Marco, 2015. "Energy management in production: A novel method to develop key performance indicators for improving energy efficiency," Applied Energy, Elsevier, vol. 149(C), pages 46-61.
    7. Marco Schletz & Ana Cardoso & Gabriela Prata Dias & Søren Salomo, 2020. "How Can Blockchain Technology Accelerate Energy Efficiency Interventions? A Use Case Comparison," Energies, MDPI, vol. 13(22), pages 1-23, November.
    8. Magda M. Smink & Marko P. Hekkert & Simona O. Negro, 2015. "Keeping sustainable innovation on a leash? Exploring incumbents’ institutional strategies," Business Strategy and the Environment, Wiley Blackwell, vol. 24(2), pages 86-101, February.
    9. Christian Felber & Vanessa Campos & Joan R. Sanchis, 2019. "The Common Good Balance Sheet, an Adequate Tool to Capture Non-Financials?," Sustainability, MDPI, vol. 11(14), pages 1-23, July.
    10. Frei, Fanny & Sinsel, Simon R. & Hanafy, Ahmed & Hoppmann, Joern, 2018. "Leaders or laggards? The evolution of electric utilities’ business portfolios during the energy transition," Energy Policy, Elsevier, vol. 120(C), pages 655-665.
    11. Lissy Langer, 2020. "An Optimal Peer-to-Peer Market Considering Modulating Heat Pumps and Photovoltaic Systems under the German Levy Regime," Energies, MDPI, vol. 13(20), pages 1-25, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hess, David J. & Jordan, Megan L., 2023. "Demunicipalization as political process: Strategic action and the sale of municipal electric utilities in the United States," Utilities Policy, Elsevier, vol. 82(C).
    2. Tomasz Jedynak & Krzysztof Wąsowicz, 2021. "The Relationship between Efficiency and Quality of Municipally Owned Corporations: Evidence from Local Public Transport and Waste Management in Poland," Sustainability, MDPI, vol. 13(17), pages 1-30, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Löhr, Meike & Mattes, Jannika, 2022. "Facing transition phase two: Analysing actor strategies in a stagnating acceleration phase," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    2. Søren Djørup & Karl Sperling & Steffen Nielsen & Poul Alborg Østergaard & Jakob Zinck Thellufsen & Peter Sorknæs & Henrik Lund & David Drysdale, 2020. "District Heating Tariffs, Economic Optimisation and Local Strategies during Radical Technological Change," Energies, MDPI, vol. 13(5), pages 1-15, March.
    3. Hellsmark, Hans & Hansen, Teis, 2020. "A new dawn for (oil) incumbents within the bioeconomy? Trade-offs and lessons for policy," Energy Policy, Elsevier, vol. 145(C).
    4. Liu, Jicheng & Sun, Jiakang & Yuan, Hanying & Su, Yihan & Feng, Shuxian & Lu, Chaoran, 2022. "Behavior analysis of photovoltaic-storage-use value chain game evolution in blockchain environment," Energy, Elsevier, vol. 260(C).
    5. Geels, Frank W. & Kern, Florian & Fuchs, Gerhard & Hinderer, Nele & Kungl, Gregor & Mylan, Josephine & Neukirch, Mario & Wassermann, Sandra, 2016. "The enactment of socio-technical transition pathways: A reformulated typology and a comparative multi-level analysis of the German and UK low-carbon electricity transitions (1990–2014)," Research Policy, Elsevier, vol. 45(4), pages 896-913.
    6. Matteo Piccioni & Fabrizio Martini & Chiara Martini & Claudia Toro, 2024. "Evaluation of Energy Performance Indicators and Energy Saving Opportunities for the Italian Rubber Manufacturing Industry," Energies, MDPI, vol. 17(7), pages 1-23, March.
    7. Langer, Lissy & Volling, Thomas, 2022. "A reinforcement learning approach to home energy management for modulating heat pumps and photovoltaic systems," Applied Energy, Elsevier, vol. 327(C).
    8. Karoliina Isoaho & Jochen Markard, 2020. "The Politics of Technology Decline: Discursive Struggles over Coal Phase‐Out in the UK," Review of Policy Research, Policy Studies Organization, vol. 37(3), pages 342-368, May.
    9. Markard, Jochen & Hoffmann, Volker H., 2016. "Analysis of complementarities: Framework and examples from the energy transition," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 63-75.
    10. Hameeda A. AlMalki & Christopher M. Durugbo, 2023. "Systematic review of institutional innovation literature: towards a multi-level management model," Management Review Quarterly, Springer, vol. 73(2), pages 731-785, June.
    11. Henk J. Steinz & Frank J. Van Rijnsoever & Frans Nauta, 2016. "How to Green the red Dragon: A Start‐ups' Little Helper for Sustainable Development in China," Business Strategy and the Environment, Wiley Blackwell, vol. 25(8), pages 593-608, December.
    12. Andersen, Allan Dahl & Markard, Jochen, 2020. "Multi-technology interaction in socio-technical transitions: How recent dynamics in HVDC technology can inform transition theories," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    13. Caroline Stiel, 2017. "Modern Public Enterprises: Organisational Innovation and Productivity," Discussion Papers of DIW Berlin 1713, DIW Berlin, German Institute for Economic Research.
    14. Ronan Bolton & Timothy J Foxon & Stephen Hall, 2016. "Energy transitions and uncertainty: Creating low carbon investment opportunities in the UK electricity sector," Environment and Planning C, , vol. 34(8), pages 1387-1403, December.
    15. Perroni, Marcos G. & Gouvea da Costa, Sergio E. & Pinheiro de Lima, Edson & Vieira da Silva, Wesley & Tortato, Ubiratã, 2018. "Measuring energy performance: A process based approach," Applied Energy, Elsevier, vol. 222(C), pages 540-553.
    16. Weigelt, Carmen & Lu, Shaohua & Verhaal, J. Cameron, 2021. "Blinded by the sun: The role of prosumers as niche actors in incumbent firms’ adoption of solar power during sustainability transitions," Research Policy, Elsevier, vol. 50(9).
    17. Shidore, Sarang & Busby, Joshua W., 2019. "What explains India's embrace of solar? State-led energy transition in a developmental polity," Energy Policy, Elsevier, vol. 129(C), pages 1179-1189.
    18. Gibb, Duncan & Johnson, Maike & Romaní, Joaquim & Gasia, Jaume & Cabeza, Luisa F. & Seitz, Antje, 2018. "Process integration of thermal energy storage systems – Evaluation methodology and case studies," Applied Energy, Elsevier, vol. 230(C), pages 750-760.
    19. Salvatori, Simone & Benedetti, Miriam & Bonfà, Francesca & Introna, Vito & Ubertini, Stefano, 2018. "Inter-sectorial benchmarking of compressed air generation energy performance: Methodology based on real data gathering in large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 217(C), pages 266-280.
    20. Engwall, Mats & Kaulio, Matti & Karakaya, Emrah & Miterev, Maxim & Berlin, Daniel, 2021. "Experimental networks for business model innovation: A way for incumbents to navigate sustainability transitions?," Technovation, Elsevier, vol. 108(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:981-:d:498631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.