IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8347-d700016.html
   My bibliography  Save this article

PV-Supercapacitor Cascaded Topology for Primary Frequency Responses and Dynamic Inertia Emulation

Author

Listed:
  • Sivakrishna Karpana

    (Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India)

  • Efstratios Batzelis

    (School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK)

  • Suman Maiti

    (Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India)

  • Chandan Chakraborty

    (Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India)

Abstract

Owing to rapid increase in PV penetration without inherent inertia, there has been an unremitting deterioration of the effective inertia of the existing power systems. This may pose a serious threat to the stability of power systems during disturbances if not taken care of. Hence, the problem of how to emulate Synthetic Inertia (SI) in PV Systems (PVS) to retain their frequency stability demands attention. Super Capacitor (SC)-based storage become an attractive option over the other energy storage types because of its high-power density, burst power handling capability, faster response and longer life cycle. Considering this, the authors here propose a novel PV-SC Cascaded Topology (PSCT) as a cost-effective approach to emulate SI by integrating a low voltage SC to a high voltage grid-connected PVS. The proposed PSCT helps in operating the SC as a voltage source rather than a current source. Thus, it eliminates the high gain requirements of the SC interfacing converters. The aim is to target two main frequency response services, i.e., Primary Frequency Response (PFR) and Synthetic Inertial Response (SIR), using a novel common control scheme, but without affecting any other energy intensive services. The authors introduced a Droop-Inspired (DI) method with an adjustable inertia constant to emulate dynamic inertia so that a wider range of Rate of Change of Frequency (RoCoF) values can be serviced with a limited storage. A very streamlined analysis was also carried out for sizing of the SC stage based on a simple Three-Point Linearization (TPL) technique and DI technique with a limited knowledge of the disturbance parameters. The whole system was initially validated in a MATLAB Simulink environment and later confirmed with the OPAL-RT Real-Time Simulator. The investigated response was subject to variation in terms of control parameters, changes in solar irradiance, grid frequency variation, etc.

Suggested Citation

  • Sivakrishna Karpana & Efstratios Batzelis & Suman Maiti & Chandan Chakraborty, 2021. "PV-Supercapacitor Cascaded Topology for Primary Frequency Responses and Dynamic Inertia Emulation," Energies, MDPI, vol. 14(24), pages 1-40, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8347-:d:700016
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8347/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8347/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Shuang Rong & Weixing Li & Zhimin Li & Yong Sun & Taiyi Zheng, 2015. "Optimal Allocation of Thermal-Electric Decoupling Systems Based on the National Economy by an Improved Conjugate Gradient Method," Energies, MDPI, vol. 9(1), pages 1-21, December.
    3. Katla, Daria & Bartela, Łukasz & Skorek-Osikowska, Anna, 2020. "Evaluation of electricity generation subsystem of power-to-gas-to-power unit using gas expander and heat recovery steam generator," Energy, Elsevier, vol. 212(C).
    4. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    5. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    6. Rabiee, Abdorreza & Khorramdel, Hossein & Aghaei, Jamshid, 2013. "A review of energy storage systems in microgrids with wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 316-326.
    7. Morgan, Eric & Manwell, James & McGowan, Jon, 2014. "Wind-powered ammonia fuel production for remote islands: A case study," Renewable Energy, Elsevier, vol. 72(C), pages 51-61.
    8. Goraj, Rafał & Kiciński, Marcin & Ślefarski, Rafał & Duczkowska, Anna, 2023. "Validity of decision criteria for selecting power-to-gas projects in Poland," Utilities Policy, Elsevier, vol. 83(C).
    9. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    10. Mariusz Niekurzak & Jerzy Mikulik, 2021. "Modeling of Energy Consumption and Reduction of Pollutant Emissions in a Walking Beam Furnace Using the Expert Method—Case Study," Energies, MDPI, vol. 14(23), pages 1-22, December.
    11. Johnson, Nathan G. & Bryden, Kenneth M., 2012. "Energy supply and use in a rural West African village," Energy, Elsevier, vol. 43(1), pages 283-292.
    12. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    13. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "Appropriate storage for high-penetration grid-connected photovoltaic plants," Energy Policy, Elsevier, vol. 40(C), pages 335-344.
    14. Jannelli, E. & Minutillo, M. & Lubrano Lavadera, A. & Falcucci, G., 2014. "A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: A sizing-design methodology," Energy, Elsevier, vol. 78(C), pages 313-322.
    15. Pavković, D. & Hoić, M. & Deur, J. & Petrić, J., 2014. "Energy storage systems sizing study for a high-altitude wind energy application," Energy, Elsevier, vol. 76(C), pages 91-103.
    16. Jülch, Verena, 2016. "Comparison of electricity storage options using levelized cost of storage (LCOS) method," Applied Energy, Elsevier, vol. 183(C), pages 1594-1606.
    17. Parra, David & Patel, Martin K., 2016. "Effect of tariffs on the performance and economic benefits of PV-coupled battery systems," Applied Energy, Elsevier, vol. 164(C), pages 175-187.
    18. Zhou, Zhibin & Benbouzid, Mohamed & Frédéric Charpentier, Jean & Scuiller, Franck & Tang, Tianhao, 2013. "A review of energy storage technologies for marine current energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 390-400.
    19. Milo, Aitor & Gaztañaga, Haizea & Etxeberria-Otadui, Ion & Bacha, Seddik & Rodríguez, Pedro, 2011. "Optimal economic exploitation of hydrogen based grid-friendly zero energy buildings," Renewable Energy, Elsevier, vol. 36(1), pages 197-205.
    20. Ashique, Ratil H. & Salam, Zainal & Bin Abdul Aziz, Mohd Junaidi & Bhatti, Abdul Rauf, 2017. "Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1243-1257.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8347-:d:700016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.