IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8094-d694287.html
   My bibliography  Save this article

Thermal Performance of a Cylindrical Lithium-Ion Battery Module Cooled by Two-Phase Refrigerant Circulation

Author

Listed:
  • Bichao Lin

    (Laboratory of Advanced Energy Systems, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
    CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
    Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Jiwen Cen

    (Laboratory of Advanced Energy Systems, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
    CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
    Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China)

  • Fangming Jiang

    (Laboratory of Advanced Energy Systems, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
    CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
    Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China)

Abstract

It is important for the safety and good performance of a Li-ion battery module/pack to have an efficient thermal management system. In this paper, a battery thermal management system with a two-phase refrigerant circulated by a pump was developed. A battery module consisting of 240 18650-type Li-ion batteries was fabricated based on a finned-tube heat-exchanger structure. This structural design offers the potential to reduce the weight of the battery thermal management system. The cooling performance of the battery module was experimentally studied under different charge/discharge C-rates and with different refrigerant circulation pump operation frequencies. The results demonstrated the effectiveness of the cooling system. It was found that the refrigerant-based battery thermal management system could maintain the battery module maximum temperature under 38 °C and the temperature non-uniformity within 2.5 °C for the various operation conditions considered. The experimental results with 0.5 C charging and a US06 drive cycle showed that the thermal management system could reduce the maximum temperature difference in the battery module from an initial value of 4.5 °C to 2.6 °C, and from the initial 1.3 °C to 1.1 °C, respectively. In addition, the variable pump frequency mode was found to be effective at controlling the battery module, functioning at a desirable constant temperature and at the same time minimizing the pump work consumption.

Suggested Citation

  • Bichao Lin & Jiwen Cen & Fangming Jiang, 2021. "Thermal Performance of a Cylindrical Lithium-Ion Battery Module Cooled by Two-Phase Refrigerant Circulation," Energies, MDPI, vol. 14(23), pages 1-12, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8094-:d:694287
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8094/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8094/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rao, Zhonghao & Wang, Shuangfeng, 2011. "A review of power battery thermal energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4554-4571.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Ling, Ziye & Wang, Fangxian & Fang, Xiaoming & Gao, Xuenong & Zhang, Zhengguo, 2015. "A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling," Applied Energy, Elsevier, vol. 148(C), pages 403-409.
    3. Zhou, Zhizuan & Wang, Dong & Peng, Yang & Li, Maoyu & Wang, Boxuan & Cao, Bei & Yang, Lizhong, 2022. "Experimental study on the thermal management performance of phase change material module for the large format prismatic lithium-ion battery," Energy, Elsevier, vol. 238(PC).
    4. Nomura, Takahiro & Zhu, Chunyu & Nan, Sheng & Tabuchi, Kazuki & Wang, Shuangfeng & Akiyama, Tomohiro, 2016. "High thermal conductivity phase change composite with a metal-stabilized carbon-fiber network," Applied Energy, Elsevier, vol. 179(C), pages 1-6.
    5. Li, Jing & Zuo, Wei & E, Jiaqiang & Zhang, Yuntian & Li, Qingqing & Sun, Ke & Zhou, Kun & Zhang, Guangde, 2022. "Multi-objective optimization of mini U-channel cold plate with SiO2 nanofluid by RSM and NSGA-II," Energy, Elsevier, vol. 242(C).
    6. Rao, Zhonghao & Wang, Shuangfeng & Peng, Feifei, 2012. "Self diffusion of the nano-encapsulated phase change materials: A molecular dynamics study," Applied Energy, Elsevier, vol. 100(C), pages 303-308.
    7. Arora, Shashank & Shen, Weixiang & Kapoor, Ajay, 2016. "Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1319-1331.
    8. Bahman Shabani & Manu Biju, 2015. "Theoretical Modelling Methods for Thermal Management of Batteries," Energies, MDPI, vol. 8(9), pages 1-25, September.
    9. Wang, Qian & Jiang, Bin & Li, Bo & Yan, Yuying, 2016. "A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 106-128.
    10. Landini, S. & O’Donovan, T.S., 2021. "Novel experimental approach for the characterisation of Lithium-Ion cells performance in isothermal conditions," Energy, Elsevier, vol. 214(C).
    11. Zichen, Wang & Changqing, Du, 2021. "A comprehensive review on thermal management systems for power lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    12. Martin Henke & Getu Hailu, 2020. "Thermal Management of Stationary Battery Systems: A Literature Review," Energies, MDPI, vol. 13(16), pages 1-16, August.
    13. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Saw, Lip Huat & Poon, Hiew Mun & Thiam, Hui San & Cai, Zuansi & Chong, Wen Tong & Pambudi, Nugroho Agung & King, Yeong Jin, 2018. "Novel thermal management system using mist cooling for lithium-ion battery packs," Applied Energy, Elsevier, vol. 223(C), pages 146-158.
    15. Nomura, Takahiro & Tabuchi, Kazuki & Zhu, Chunyu & Sheng, Nan & Wang, Shuangfeng & Akiyama, Tomohiro, 2015. "High thermal conductivity phase change composite with percolating carbon fiber network," Applied Energy, Elsevier, vol. 154(C), pages 678-685.
    16. Xu, X.M. & He, R., 2014. "Review on the heat dissipation performance of battery pack with different structures and operation conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 301-315.
    17. Jankowski, Nicholas R. & McCluskey, F. Patrick, 2014. "A review of phase change materials for vehicle component thermal buffering," Applied Energy, Elsevier, vol. 113(C), pages 1525-1561.
    18. Zhang, Sijie & Zhao, Rui & Liu, Jie & Gu, Junjie, 2014. "Investigation on a hydrogel based passive thermal management system for lithium ion batteries," Energy, Elsevier, vol. 68(C), pages 854-861.
    19. Mousavi, Sepehr & Zadehkabir, Amirhosein & Siavashi, Majid & Yang, Xiaohu, 2023. "An improved hybrid thermal management system for prismatic Li-ion batteries integrated with mini-channel and phase change materials," Applied Energy, Elsevier, vol. 334(C).
    20. Sina Shojaei & Andrew McGordon & Simon Robinson & James Marco, 2017. "Improving the Performance Attributes of Plug-in Hybrid Electric Vehicles in Hot Climates through Key-Off Battery Cooling," Energies, MDPI, vol. 10(12), pages 1-28, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8094-:d:694287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.