IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7459-d674925.html
   My bibliography  Save this article

Methods of Condition Monitoring and Fault Detection for Electrical Machines

Author

Listed:
  • Karolina Kudelina

    (Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Bilal Asad

    (Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Toomas Vaimann

    (Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Anton Rassõlkin

    (Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Ants Kallaste

    (Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Huynh Van Khang

    (Department of Engineering Sciences, University of Agder, 4604 Kristiansand, Norway)

Abstract

Nowadays, electrical machines and drive systems are playing an essential role in different applications. Eventually, various failures occur in long-term continuous operation. Due to the increased influence of such devices on industry, industrial branches, as well as ordinary human life, condition monitoring and timely fault diagnostics have gained a reasonable importance. In this review article, there are studied different diagnostic techniques that can be used for algorithms’ training and realization of predictive maintenance. Benefits and drawbacks of intelligent diagnostic techniques are highlighted. The most widespread faults of electrical machines are discussed as well as techniques for parameters’ monitoring are introduced.

Suggested Citation

  • Karolina Kudelina & Bilal Asad & Toomas Vaimann & Anton Rassõlkin & Ants Kallaste & Huynh Van Khang, 2021. "Methods of Condition Monitoring and Fault Detection for Electrical Machines," Energies, MDPI, vol. 14(22), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7459-:d:674925
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7459/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7459/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luo Wang & Yonggang Li & Junqing Li, 2018. "Diagnosis of Inter-Turn Short Circuit of Synchronous Generator Rotor Winding Based on Volterra Kernel Identification," Energies, MDPI, vol. 11(10), pages 1-15, September.
    2. Gilsu Choi, 2021. "Analysis and Experimental Verification of the Demagnetization Vulnerability in Various PM Synchronous Machine Configurations for an EV Application," Energies, MDPI, vol. 14(17), pages 1-16, September.
    3. Emilio Parrado-Hernández & Guillermo Robles & Jorge Alfredo Ardila-Rey & Juan Manuel Martínez-Tarifa, 2018. "Robust Condition Assessment of Electrical Equipment with One Class Support Vector Machines Based on the Measurement of Partial Discharges," Energies, MDPI, vol. 11(3), pages 1-18, February.
    4. Abeer Alshejari & Vassilis S. Kodogiannis & Stavros Leonidis, 2020. "Development of Neurofuzzy Architectures for Electricity Price Forecasting," Energies, MDPI, vol. 13(5), pages 1-24, March.
    5. Valentina Zaccaria & Moksadur Rahman & Ioanna Aslanidou & Konstantinos Kyprianidis, 2019. "A Review of Information Fusion Methods for Gas Turbine Diagnostics," Sustainability, MDPI, vol. 11(22), pages 1-20, November.
    6. Lucia Frosini, 2020. "Novel Diagnostic Techniques for Rotating Electrical Machines—A Review," Energies, MDPI, vol. 13(19), pages 1-26, September.
    7. Tomas Zimnickas & Jonas Vanagas & Karolis Dambrauskas & Artūras Kalvaitis & Mindaugas Ažubalis, 2020. "Application of Advanced Vibration Monitoring Systems and Long Short-Term Memory Networks for Brushless DC Motor Stator Fault Monitoring and Classification," Energies, MDPI, vol. 13(4), pages 1-18, February.
    8. Zuolu Wang & Jie Yang & Haiyang Li & Dong Zhen & Yuandong Xu & Fengshou Gu, 2019. "Fault Identification of Broken Rotor Bars in Induction Motors Using an Improved Cyclic Modulation Spectral Analysis," Energies, MDPI, vol. 12(17), pages 1-20, August.
    9. Andrea Del Pizzo & Luigi Pio Di Noia & Emanuele Fedele, 2020. "A Simple Analytical Model of Static Eccentricity for PM Brushless Motors and Validation through FEM Analysis," Energies, MDPI, vol. 13(13), pages 1-19, July.
    10. Xuejiao Ren & Ruifang Liu & Erle Yang, 2019. "Modelling of the Bearing Breakdown Resistance in Bearing Currents Problem of AC Motors," Energies, MDPI, vol. 12(6), pages 1-9, March.
    11. Przemyslaw Pietrzak & Marcin Wolkiewicz, 2021. "Comparison of Selected Methods for the Stator Winding Condition Monitoring of a PMSM Using the Stator Phase Currents," Energies, MDPI, vol. 14(6), pages 1-23, March.
    12. Ying Ji & Jianhui Wang & Jiacan Xu & Xiaoke Fang & Huaguang Zhang, 2019. "Real-Time Energy Management of a Microgrid Using Deep Reinforcement Learning," Energies, MDPI, vol. 12(12), pages 1-21, June.
    13. Dawid Szurgacz & Sergey Zhironkin & Stefan Vöth & Jiří Pokorný & A.J.S. (Sam) Spearing & Michal Cehlár & Marta Stempniak & Leszek Sobik, 2021. "Thermal Imaging Study to Determine the Operational Condition of a Conveyor Belt Drive System Structure," Energies, MDPI, vol. 14(11), pages 1-18, June.
    14. Sebastian Berhausen & Tomasz Jarek, 2021. "Method of Limiting Shaft Voltages in AC Electric Machines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    15. Leidy Gutiérrez & Julian Patiño & Eduardo Duque-Grisales, 2021. "A Comparison of the Performance of Supervised Learning Algorithms for Solar Power Prediction," Energies, MDPI, vol. 14(15), pages 1-16, July.
    16. Dimitrios A. Papathanasopoulos & Konstantinos N. Giannousakis & Evangelos S. Dermatas & Epaminondas D. Mitronikas, 2021. "Vibration Monitoring for Position Sensor Fault Diagnosis in Brushless DC Motor Drives," Energies, MDPI, vol. 14(8), pages 1-24, April.
    17. Elsie Swana & Wesley Doorsamy, 2021. "An Unsupervised Learning Approach to Condition Assessment on a Wound-Rotor Induction Generator," Energies, MDPI, vol. 14(3), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jose R. Huerta-Rosales & David Granados-Lieberman & Juan P. Amezquita-Sanchez & Arturo Garcia-Perez & Maximiliano Bueno-Lopez & Martin Valtierra-Rodriguez, 2022. "Contrast Estimation in Vibroacoustic Signals for Diagnosing Early Faults of Short-Circuited Turns in Transformers under Different Load Conditions," Energies, MDPI, vol. 15(22), pages 1-15, November.
    2. Hoffstaedt, J.P. & Truijen, D.P.K. & Fahlbeck, J. & Gans, L.H.A. & Qudaih, M. & Laguna, A.J. & De Kooning, J.D.M. & Stockman, K. & Nilsson, H. & Storli, P.-T. & Engel, B. & Marence, M. & Bricker, J.D., 2022. "Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Sebastian Berhausen & Tomasz Jarek, 2022. "Analysis of Impact of Design Solutions of an Electric Machine with Permanent Magnets for Bearing Voltages with Inverter Power Supply," Energies, MDPI, vol. 15(12), pages 1-19, June.
    4. Toomas Vaimann & Jose Alfonso Antonino-Daviu & Anton Rassõlkin, 2023. "Novel Approaches to Electrical Machine Fault Diagnosis," Energies, MDPI, vol. 16(15), pages 1-4, July.
    5. Muhammad Usman Sardar & Toomas Vaimann & Lauri Kütt & Ants Kallaste & Bilal Asad & Siddique Akbar & Karolina Kudelina, 2023. "Inverter-Fed Motor Drive System: A Systematic Analysis of Condition Monitoring and Practical Diagnostic Techniques," Energies, MDPI, vol. 16(15), pages 1-41, July.
    6. Hadi Ashraf Raja & Karolina Kudelina & Bilal Asad & Toomas Vaimann & Ants Kallaste & Anton Rassõlkin & Huynh Van Khang, 2022. "Signal Spectrum-Based Machine Learning Approach for Fault Prediction and Maintenance of Electrical Machines," Energies, MDPI, vol. 15(24), pages 1-16, December.
    7. Ahmed Belkhadir & Remus Pusca & Driss Belkhayat & Raphaël Romary & Youssef Zidani, 2023. "Analytical Modeling, Analysis and Diagnosis of External Rotor PMSM with Stator Winding Unbalance Fault," Energies, MDPI, vol. 16(7), pages 1-23, April.
    8. Mikko Tahkola & Áron Szücs & Jari Halme & Akhtar Zeb & Janne Keränen, 2022. "A Novel Machine Learning-Based Approach for Induction Machine Fault Classifier Development—A Broken Rotor Bar Case Study," Energies, MDPI, vol. 15(9), pages 1-23, May.
    9. Viktor Rjabtšikov & Anton Rassõlkin & Karolina Kudelina & Ants Kallaste & Toomas Vaimann, 2023. "Review of Electric Vehicle Testing Procedures for Digital Twin Development: A Comprehensive Analysis," Energies, MDPI, vol. 16(19), pages 1-17, October.
    10. Krzysztof Kolano & Artur Jan Moradewicz & Bartosz Drzymała & Jakub Gęca, 2022. "Influence of the Placement Accuracy of the Brushless DC Motor Hall Sensor on Inverter Transistor Losses," Energies, MDPI, vol. 15(5), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siddique Akbar & Toomas Vaimann & Bilal Asad & Ants Kallaste & Muhammad Usman Sardar & Karolina Kudelina, 2023. "State-of-the-Art Techniques for Fault Diagnosis in Electrical Machines: Advancements and Future Directions," Energies, MDPI, vol. 16(17), pages 1-44, September.
    2. Wagner Fontes Godoy & Daniel Morinigo-Sotelo & Oscar Duque-Perez & Ivan Nunes da Silva & Alessandro Goedtel & Rodrigo Henrique Cunha Palácios, 2020. "Estimation of Bearing Fault Severity in Line-Connected and Inverter-Fed Three-Phase Induction Motors," Energies, MDPI, vol. 13(13), pages 1-17, July.
    3. Lei Yang & Ying Yang & Junfu Wen & Lei Jia & Erle Yang & Ruifang Liu, 2022. "Suppression of Rotor-Grounding Bearing Currents Based on Matching Stator and Rotor Grounding Impedances," Energies, MDPI, vol. 15(5), pages 1-13, February.
    4. Alqahtani, Mohammed & Hu, Mengqi, 2022. "Dynamic energy scheduling and routing of multiple electric vehicles using deep reinforcement learning," Energy, Elsevier, vol. 244(PA).
    5. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    6. Junqing Li & Luo Wang, 2019. "Calculation and Analysis of Rotor Thermal Static Field for Inter-Turn Short Circuit of Large Hydro-Generator Excitation Winding," Energies, MDPI, vol. 12(7), pages 1-19, April.
    7. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    8. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    9. Joanna Kott & Marek Kott, 2019. "Generic Ontology of Energy Consumption Households," Energies, MDPI, vol. 12(19), pages 1-19, September.
    10. Zhu, Ziqing & Hu, Ze & Chan, Ka Wing & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2023. "Reinforcement learning in deregulated energy market: A comprehensive review," Applied Energy, Elsevier, vol. 329(C).
    11. Reza Jafari & Pedram Asef & Mohammad Ardebili & Mohammad Mahdi Derakhshani, 2022. "Linear Permanent Magnet Vernier Generators for Wave Energy Applications: Analysis, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(17), pages 1-35, September.
    12. Alexander N. Kozlov & Nikita V. Tomin & Denis N. Sidorov & Electo E. S. Lora & Victor G. Kurbatsky, 2020. "Optimal Operation Control of PV-Biomass Gasifier-Diesel-Hybrid Systems Using Reinforcement Learning Techniques," Energies, MDPI, vol. 13(10), pages 1-20, May.
    13. Wenhao Zhuo & Andrey V. Savkin, 2019. "Profit Maximizing Control of a Microgrid with Renewable Generation and BESS Based on a Battery Cycle Life Model and Energy Price Forecasting," Energies, MDPI, vol. 12(15), pages 1-17, July.
    14. Nakıp, Mert & Çopur, Onur & Biyik, Emrah & Güzeliş, Cüneyt, 2023. "Renewable energy management in smart home environment via forecast embedded scheduling based on Recurrent Trend Predictive Neural Network," Applied Energy, Elsevier, vol. 340(C).
    15. Maciej Skowron & Czeslaw T. Kowalski & Teresa Orlowska-Kowalska, 2022. "Impact of the Convolutional Neural Network Structure and Training Parameters on the Effectiveness of the Diagnostic Systems of Modern AC Motor Drives," Energies, MDPI, vol. 15(19), pages 1-22, September.
    16. Bio Gassi, Karim & Baysal, Mustafa, 2023. "Improving real-time energy decision-making model with an actor-critic agent in modern microgrids with energy storage devices," Energy, Elsevier, vol. 263(PE).
    17. Sebastian Berhausen & Stefan Paszek, 2021. "Determination of the Leakage Reactance of End Windings of a High-Power Synchronous Generator Stator Winding Using the Finite Element Method," Energies, MDPI, vol. 14(21), pages 1-15, October.
    18. Manje Yea & Ki Jin Han, 2020. "Modified Slot Opening for Reducing Shaft-to-Frame Voltage of AC Motors," Energies, MDPI, vol. 13(3), pages 1-9, February.
    19. Zheng, Lingwei & Wu, Hao & Guo, Siqi & Sun, Xinyu, 2023. "Real-time dispatch of an integrated energy system based on multi-stage reinforcement learning with an improved action-choosing strategy," Energy, Elsevier, vol. 277(C).
    20. Rae-Jun Park & Kyung-Bin Song & Bo-Sung Kwon, 2020. "Short-Term Load Forecasting Algorithm Using a Similar Day Selection Method Based on Reinforcement Learning," Energies, MDPI, vol. 13(10), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7459-:d:674925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.