IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p760-d318401.html
   My bibliography  Save this article

Modified Slot Opening for Reducing Shaft-to-Frame Voltage of AC Motors

Author

Listed:
  • Manje Yea

    (School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea)

  • Ki Jin Han

    (Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, Korea)

Abstract

This paper presents a method to reduce the winding-to-rotor capacitance of electrical machines for the purpose of suppressing shaft-to-frame voltage, which causes reliability issues, such as electromagnetic interference (EMI) and bearing current. The proposed method is based on the modification of slot opening shape of the stator core, including the variation of slot opening width and the use of oblique slot opening. For the verification of the suggested method, six different slot opening shapes, including a reference design, are analyzed and compared using finite element analysis, and the results show that the proposed method can reduce the shaft-to-frame voltage by 98%, compared to the reference design.

Suggested Citation

  • Manje Yea & Ki Jin Han, 2020. "Modified Slot Opening for Reducing Shaft-to-Frame Voltage of AC Motors," Energies, MDPI, vol. 13(3), pages 1-9, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:760-:d:318401
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/760/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/760/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chengde Tong & Zhiyi Song & Jingang Bai & Jiaqi Liu & Ping Zheng, 2016. "Analytical Investigation of the Magnetic-Field Distribution in an Axial Magnetic-Field-Modulated Brushless Double-Rotor Machine," Energies, MDPI, vol. 9(8), pages 1-23, July.
    2. Ruifang Liu & Xin Ma & Xuejiao Ren & Junci Cao & Shuangxia Niu, 2018. "Comparative Analysis of Bearing Current in Wind Turbine Generators," Energies, MDPI, vol. 11(5), pages 1-13, May.
    3. Xuejiao Ren & Ruifang Liu & Erle Yang, 2019. "Modelling of the Bearing Breakdown Resistance in Bearing Currents Problem of AC Motors," Energies, MDPI, vol. 12(6), pages 1-9, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastian Berhausen & Tomasz Jarek, 2022. "Analysis of Impact of Design Solutions of an Electric Machine with Permanent Magnets for Bearing Voltages with Inverter Power Supply," Energies, MDPI, vol. 15(12), pages 1-19, June.
    2. Muhammad Usman Sardar & Toomas Vaimann & Lauri Kütt & Ants Kallaste & Bilal Asad & Siddique Akbar & Karolina Kudelina, 2023. "Inverter-Fed Motor Drive System: A Systematic Analysis of Condition Monitoring and Practical Diagnostic Techniques," Energies, MDPI, vol. 16(15), pages 1-41, July.
    3. Sebastian Berhausen & Tomasz Jarek & Petr Orság, 2022. "Influence of the Shielding Winding on the Bearing Voltage in a Permanent Magnet Synchronous Machine," Energies, MDPI, vol. 15(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wagner Fontes Godoy & Daniel Morinigo-Sotelo & Oscar Duque-Perez & Ivan Nunes da Silva & Alessandro Goedtel & Rodrigo Henrique Cunha Palácios, 2020. "Estimation of Bearing Fault Severity in Line-Connected and Inverter-Fed Three-Phase Induction Motors," Energies, MDPI, vol. 13(13), pages 1-17, July.
    2. Usha Sengamalai & T. M. Thamizh Thentral & Palanisamy Ramasamy & Mohit Bajaj & Syed Sabir Hussain Bukhari & Ehab E. Elattar & Ahmed Althobaiti & Salah Kamel, 2022. "Mitigation of Circulating Bearing Current in Induction Motor Drive Using Modified ANN Based MRAS for Traction Application," Mathematics, MDPI, vol. 10(8), pages 1-24, April.
    3. Fernando Acosta-Cambranis & Jordi Zaragoza & Luis Romeral & Néstor Berbel, 2020. "Comparative Analysis of SVM Techniques for a Five-Phase VSI Based on SiC Devices," Energies, MDPI, vol. 13(24), pages 1-25, December.
    4. Lei Xu & Mingyao Lin & Xinghe Fu & Kai Liu & Baocheng Guo, 2017. "Analytical Calculation of the Magnetic Field Distribution in a Linear and Rotary Machine with an Orthogonally Arrayed Permanent Magnet," Energies, MDPI, vol. 10(4), pages 1-18, April.
    5. Karolina Kudelina & Bilal Asad & Toomas Vaimann & Anton Rassõlkin & Ants Kallaste & Huynh Van Khang, 2021. "Methods of Condition Monitoring and Fault Detection for Electrical Machines," Energies, MDPI, vol. 14(22), pages 1-20, November.
    6. Rundong Huang & Chunhua Liu & Zaixin Song & Hang Zhao, 2021. "Design and Analysis of a Novel Axial-Radial Flux Permanent Magnet Machine with Halbach-Array Permanent Magnets," Energies, MDPI, vol. 14(12), pages 1-17, June.
    7. Lei Yang & Ying Yang & Junfu Wen & Lei Jia & Erle Yang & Ruifang Liu, 2022. "Suppression of Rotor-Grounding Bearing Currents Based on Matching Stator and Rotor Grounding Impedances," Energies, MDPI, vol. 15(5), pages 1-13, February.
    8. Xuejiao Ren & Ruifang Liu & Erle Yang, 2019. "Modelling of the Bearing Breakdown Resistance in Bearing Currents Problem of AC Motors," Energies, MDPI, vol. 12(6), pages 1-9, March.
    9. Amr. S. Zalhaf & Mazen Abdel-Salam & Mahmoud Ahmed, 2019. "An Active Common-Mode Voltage Canceler for PWM Converters in Wind-Turbine Doubly-Fed Induction Generators," Energies, MDPI, vol. 12(4), pages 1-12, February.
    10. Xianglin Li & Yingjie Tan & Bo Yan & Yujian Zhao & Hao Wang, 2023. "Demagnetization Modeling and Analysis for a Six-Phase Surface-Mounted Field-Modulated Permanent-Magnet Machine Based on Equivalent Magnetic Network," Energies, MDPI, vol. 16(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:760-:d:318401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.