IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i8p589-d74788.html
   My bibliography  Save this article

Analytical Investigation of the Magnetic-Field Distribution in an Axial Magnetic-Field-Modulated Brushless Double-Rotor Machine

Author

Listed:
  • Chengde Tong

    (Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China)

  • Zhiyi Song

    (Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China)

  • Jingang Bai

    (Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China)

  • Jiaqi Liu

    (Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China)

  • Ping Zheng

    (Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China)

Abstract

The axial magnetic-field-modulated brushless double-rotor machine (MFM-BDRM) is a novel possible alternative power-split device for hybrid electric vehicles (HEVs). This paper proposes a two-dimensional (2-D) analytical method to predict the performance of the axial MFM-BDRM to reduce computing time. The computation is based on the solution of Laplace’s or Poisson’s equation with boundary conditions for each elementary rectangular region. By taking account of the existence of modulating ring and the stator slotting effect, the proposed model is able to calculate magnetic-field distribution with high accuracy. In order to assess the proposed method, the 2-D analytical and three-dimensional (3-D) finite element analysis (FEA) results have been compared, and good agreements have been achieved. As the analytical computation is much faster and more flexible, the proposed method can be used in the preliminary design process of the axial MFM-BDRM.

Suggested Citation

  • Chengde Tong & Zhiyi Song & Jingang Bai & Jiaqi Liu & Ping Zheng, 2016. "Analytical Investigation of the Magnetic-Field Distribution in an Axial Magnetic-Field-Modulated Brushless Double-Rotor Machine," Energies, MDPI, vol. 9(8), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:589-:d:74788
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/8/589/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/8/589/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jingang Bai & Yong Liu & Yi Sui & Chengde Tong & Quanbin Zhao & Jiawei Zhang, 2014. "Investigation of the Cooling and Thermal-Measuring System of a Compound-Structure Permanent-Magnet Synchronous Machine," Energies, MDPI, vol. 7(3), pages 1-34, March.
    2. Ping Zheng & Zhiyi Song & Jingang Bai & Chengde Tong & Bin Yu, 2013. "Research on an Axial Magnetic-Field-Modulated Brushless Double Rotor Machine," Energies, MDPI, vol. 6(9), pages 1-31, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Xu & Mingyao Lin & Xinghe Fu & Kai Liu & Baocheng Guo, 2017. "Analytical Calculation of the Magnetic Field Distribution in a Linear and Rotary Machine with an Orthogonally Arrayed Permanent Magnet," Energies, MDPI, vol. 10(4), pages 1-18, April.
    2. Xianglin Li & Yingjie Tan & Bo Yan & Yujian Zhao & Hao Wang, 2023. "Demagnetization Modeling and Analysis for a Six-Phase Surface-Mounted Field-Modulated Permanent-Magnet Machine Based on Equivalent Magnetic Network," Energies, MDPI, vol. 16(16), pages 1-19, August.
    3. Manje Yea & Ki Jin Han, 2020. "Modified Slot Opening for Reducing Shaft-to-Frame Voltage of AC Motors," Energies, MDPI, vol. 13(3), pages 1-9, February.
    4. Rundong Huang & Chunhua Liu & Zaixin Song & Hang Zhao, 2021. "Design and Analysis of a Novel Axial-Radial Flux Permanent Magnet Machine with Halbach-Array Permanent Magnets," Energies, MDPI, vol. 14(12), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Zhao & Zhongxin Gu & Bin Li & Xiangdong Liu & Xiaobei Li & Zhen Chen, 2015. "Research on the Torque and Back EMF Performance of a High Speed PMSM Used for Flywheel Energy Storage," Energies, MDPI, vol. 8(4), pages 1-22, April.
    2. Christopher H. T. Lee & Chunhua Liu & K. T. Chau, 2014. "A Magnetless Axial-Flux Machine for Range-Extended Electric Vehicles," Energies, MDPI, vol. 7(3), pages 1-17, March.
    3. Yubin Wang & Chenchen Zhao & Wei Xu & Xiaodong Zhang, 2018. "Vibroacoustic Prediction of a High-Temperature Superconducting Field-Modulation Double-Stator Machine with Stationary Seal," Energies, MDPI, vol. 11(10), pages 1-15, September.
    4. Yubin Wang & Guangyong Yang & Xinkai Zhu & Xianglin Li & Wenzhong Ma, 2018. "Electromagnetic Characteristics Analysis of a High-Temperature Superconducting Field-Modulation Double-Stator Machine with Stationary Seal," Energies, MDPI, vol. 11(5), pages 1-13, May.
    5. Hui Yang & Heyun Lin & Zi-Qiang Zhu & Shuhua Fang & Yunkai Huang, 2016. "A Dual-Consequent-Pole Vernier Memory Machine," Energies, MDPI, vol. 9(3), pages 1-15, February.
    6. Chunhua Liu & K. T. Chau, 2014. "Electromagnetic Design of a New Electrically Controlled Magnetic Variable-Speed Gearing Machine," Energies, MDPI, vol. 7(3), pages 1-16, March.
    7. Jing Zhao & Wei Liu & Bin Li & Xiangdong Liu & Congzhe Gao & Zhongxin Gu, 2015. "Investigation of Electromagnetic, Thermal and Mechanical Characteristics of a Five-Phase Dual-Rotor Permanent-Magnet Synchronous Motor," Energies, MDPI, vol. 8(9), pages 1-31, September.
    8. Xuan Wu & Hui Wang & Shoudao Huang & Keyuan Huang & Li Wang, 2015. "Sensorless Speed Control with Initial Rotor Position Estimation for Surface Mounted Permanent Magnet Synchronous Motor Drive in Electric Vehicles," Energies, MDPI, vol. 8(10), pages 1-17, October.
    9. Bin Yu & Shukuan Zhang & Jidong Yan & Luming Cheng & Ping Zheng, 2015. "Thermal Analysis of a Novel Cylindrical Transverse-Flux Permanent-Magnet Linear Machine," Energies, MDPI, vol. 8(8), pages 1-23, July.
    10. Xianglin Li & K. T. Chau & Yubin Wang, 2016. "Modeling of a Field-Modulated Permanent-Magnet Machine," Energies, MDPI, vol. 9(12), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:589-:d:74788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.