IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i4p2867-2888d48189.html
   My bibliography  Save this article

Research on the Torque and Back EMF Performance of a High Speed PMSM Used for Flywheel Energy Storage

Author

Listed:
  • Jing Zhao

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

  • Zhongxin Gu

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

  • Bin Li

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

  • Xiangdong Liu

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

  • Xiaobei Li

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

  • Zhen Chen

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

Abstract

Due to advantages such as high energy density, high power density, rapid charge and discharge, high cyclic-life, and environmentally friendly, flywheel energy storage systems (FESs) are widely used in various fields. However, the performance of FES systems depends on the performance of a high speed machine, therefore, the design and optimization of a high efficiency and high power density machine are very crucial to improve the performance of the whole FES system. In this paper, a high speed permanent-magnet synchronous machine (PMSM) is researched. Considering the requirement of low torque ripple in low speed and loss caused by back electromotive force (EMF) harmonics, the electromagnetic performance is improved from points of view of slot/pole matching, magnetic-pole embrace with the finite element method (FEM). Furthermore, the magnetic-pole eccentricity, the slot opening, the thickness of PM and air-gap length are also optimized with Taguchi method. The electromagnetic performance, such as torque ripple, cogging torque, average torque and back EMF wave are much improved after optimization. Finally, experiments are carried out to verify the calculated results.

Suggested Citation

  • Jing Zhao & Zhongxin Gu & Bin Li & Xiangdong Liu & Xiaobei Li & Zhen Chen, 2015. "Research on the Torque and Back EMF Performance of a High Speed PMSM Used for Flywheel Energy Storage," Energies, MDPI, vol. 8(4), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:4:p:2867-2888:d:48189
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/4/2867/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/4/2867/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ching-Hui Chang & Nabendu Pal & Wooi Lim & Jyh-Jiuan Lin, 2010. "Comparing several population means: a parametric bootstrap method, and its comparison with usual ANOVA F test as well as ANOM," Computational Statistics, Springer, vol. 25(1), pages 71-95, March.
    2. Jingang Bai & Yong Liu & Yi Sui & Chengde Tong & Quanbin Zhao & Jiawei Zhang, 2014. "Investigation of the Cooling and Thermal-Measuring System of a Compound-Structure Permanent-Magnet Synchronous Machine," Energies, MDPI, vol. 7(3), pages 1-34, March.
    3. Chun-Yu Hsiao & Sheng-Nian Yeh & Jonq-Chin Hwang, 2011. "A Novel Cogging Torque Simulation Method for Permanent-Magnet Synchronous Machines," Energies, MDPI, vol. 4(12), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengming Zhang & Qingbo Guo & Liyi Li & Mingyi Wang & Tiecheng Wang, 2017. "System Efficiency Improvement for Electric Vehicles Adopting a Permanent Magnet Synchronous Motor Direct Drive System," Energies, MDPI, vol. 10(12), pages 1-27, December.
    2. Xuan Wu & Hui Wang & Shoudao Huang & Keyuan Huang & Li Wang, 2015. "Sensorless Speed Control with Initial Rotor Position Estimation for Surface Mounted Permanent Magnet Synchronous Motor Drive in Electric Vehicles," Energies, MDPI, vol. 8(10), pages 1-17, October.
    3. Shun Li & Xinxiu Zhou, 2018. "Sensorless Energy Conservation Control for Permanent Magnet Synchronous Motors Based on a Novel Hybrid Observer Applied in Coal Conveyer Systems," Energies, MDPI, vol. 11(10), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel García-Gracia & Ángel Jiménez Romero & Jorge Herrero Ciudad & Susana Martín Arroyo, 2018. "Cogging Torque Reduction Based on a New Pre-Slot Technique for a Small Wind Generator," Energies, MDPI, vol. 11(11), pages 1-15, November.
    2. Jing Zhao & Wei Liu & Bin Li & Xiangdong Liu & Congzhe Gao & Zhongxin Gu, 2015. "Investigation of Electromagnetic, Thermal and Mechanical Characteristics of a Five-Phase Dual-Rotor Permanent-Magnet Synchronous Motor," Energies, MDPI, vol. 8(9), pages 1-31, September.
    3. Xing Liu & Jinhua Du & Deliang Liang, 2016. "Analysis and Speed Ripple Mitigation of a Space Vector Pulse Width Modulation-Based Permanent Magnet Synchronous Motor with a Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 9(11), pages 1-15, November.
    4. Xuan Wu & Hui Wang & Shoudao Huang & Keyuan Huang & Li Wang, 2015. "Sensorless Speed Control with Initial Rotor Position Estimation for Surface Mounted Permanent Magnet Synchronous Motor Drive in Electric Vehicles," Energies, MDPI, vol. 8(10), pages 1-17, October.
    5. Farya Golesorkhie & Fuwen Yang & Ljubo Vlacic & Geoff Tansley, 2020. "Field Oriented Control-Based Reduction of the Vibration and Power Consumption of a Blood Pump," Energies, MDPI, vol. 13(15), pages 1-18, July.
    6. Bin Yu & Shukuan Zhang & Jidong Yan & Luming Cheng & Ping Zheng, 2015. "Thermal Analysis of a Novel Cylindrical Transverse-Flux Permanent-Magnet Linear Machine," Energies, MDPI, vol. 8(8), pages 1-23, July.
    7. Chengde Tong & Zhiyi Song & Jingang Bai & Jiaqi Liu & Ping Zheng, 2016. "Analytical Investigation of the Magnetic-Field Distribution in an Axial Magnetic-Field-Modulated Brushless Double-Rotor Machine," Energies, MDPI, vol. 9(8), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:4:p:2867-2888:d:48189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.