IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i3p134-d64523.html
   My bibliography  Save this article

A Dual-Consequent-Pole Vernier Memory Machine

Author

Listed:
  • Hui Yang

    (Engineering Research Center for Motion Control of Ministry of Education, Southeast University, Nanjing 210096, China
    Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 3JD, UK
    These authors contributed equally to this work.)

  • Heyun Lin

    (Engineering Research Center for Motion Control of Ministry of Education, Southeast University, Nanjing 210096, China)

  • Zi-Qiang Zhu

    (Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 3JD, UK
    These authors contributed equally to this work.)

  • Shuhua Fang

    (Engineering Research Center for Motion Control of Ministry of Education, Southeast University, Nanjing 210096, China
    These authors contributed equally to this work.)

  • Yunkai Huang

    (Engineering Research Center for Motion Control of Ministry of Education, Southeast University, Nanjing 210096, China
    These authors contributed equally to this work.)

Abstract

This paper proposes a novel dual-consequent-pole Vernier memory machine (DCP-VMM) featuring alternatively arranged NdFeB and low coercive-force (LCF) magnet poles on the rotating and stationary sides, respectively. Due to the presence of LCF magnets that can be repetitively magnetized or demagnetized via a simple current pulse, the extra-high torque density at low-speed, and excellent high-efficient high-speed flux-weakening performance can be simultaneously realized. The configuration and operating principle, as well as the design considerations of the proposed machine are introduced, respectively. The finite element method (FEM) coupled with a nonlinear analytical hysteresis model for LCF magnets is employed to investigate the electromagnetic performance of the machine, which verifies the effectiveness of machine design and the feasibility as a competent candidate for automotive applications.

Suggested Citation

  • Hui Yang & Heyun Lin & Zi-Qiang Zhu & Shuhua Fang & Yunkai Huang, 2016. "A Dual-Consequent-Pole Vernier Memory Machine," Energies, MDPI, vol. 9(3), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:134-:d:64523
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/3/134/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/3/134/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ping Zheng & Zhiyi Song & Jingang Bai & Chengde Tong & Bin Yu, 2013. "Research on an Axial Magnetic-Field-Modulated Brushless Double Rotor Machine," Energies, MDPI, vol. 6(9), pages 1-31, September.
    2. Ping Zheng & Quanbin Zhao & Jingang Bai & Bin Yu & Zhiyi Song & Jing Shang, 2013. "Analysis and Design of a Transverse-Flux Dual Rotor Machine for Power-Split Hybrid Electric Vehicle Applications," Energies, MDPI, vol. 6(12), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jung-Woo Kwon & Byung-Il Kwon, 2022. "Torque Enhancement Principle of Stator PM Vernier Machine by Consequent Pole Structure," Energies, MDPI, vol. 15(9), pages 1-11, April.
    2. Daekyu Jang & Junghwan Chang, 2017. "Influences of Winding MMF Harmonics on Torque Characteristics in Surface-Mounted Permanent Magnet Vernier Machines," Energies, MDPI, vol. 10(4), pages 1-17, April.
    3. Dong Yu & Xiaoyan Huang & Lijian Wu & Youtong Fang, 2019. "Design and Analysis of Outer Rotor Permanent-Magnet Vernier Machines with Overhang Structure for In-Wheel Direct-Drive Application," Energies, MDPI, vol. 12(7), pages 1-9, April.
    4. Yujun Shi & Linni Jian, 2018. "A Novel Dual-Permanent-Magnet-Excited Machine with Flux Strengthening Effect for Low-Speed Large-Torque Applications," Energies, MDPI, vol. 11(1), pages 1-17, January.
    5. Ya Li & Hui Yang & Heyun Lin & Shuhua Fang & Weijia Wang, 2019. "A Novel Magnet-Axis-Shifted Hybrid Permanent Magnet Machine for Electric Vehicle Applications," Energies, MDPI, vol. 12(4), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher H. T. Lee & Chunhua Liu & K. T. Chau, 2014. "A Magnetless Axial-Flux Machine for Range-Extended Electric Vehicles," Energies, MDPI, vol. 7(3), pages 1-17, March.
    2. Guobin Peng & Jin Wei & Yujun Shi & Ziyun Shao & Linni Jian, 2018. "A Novel Transverse Flux Permanent Magnet Disk Wind Power Generator with H-Shaped Stator Cores," Energies, MDPI, vol. 11(4), pages 1-19, March.
    3. Andrzej Smoleń & Lesław Gołębiowski & Marek Gołębiowski & Damian Mazur, 2019. "Computationally Efficient Method of Co-Energy Calculation for Transverse Flux Machine Based on Poisson Equation in 2D," Energies, MDPI, vol. 12(22), pages 1-16, November.
    4. Yubin Wang & Chenchen Zhao & Wei Xu & Xiaodong Zhang, 2018. "Vibroacoustic Prediction of a High-Temperature Superconducting Field-Modulation Double-Stator Machine with Stationary Seal," Energies, MDPI, vol. 11(10), pages 1-15, September.
    5. Yubin Wang & Guangyong Yang & Xinkai Zhu & Xianglin Li & Wenzhong Ma, 2018. "Electromagnetic Characteristics Analysis of a High-Temperature Superconducting Field-Modulation Double-Stator Machine with Stationary Seal," Energies, MDPI, vol. 11(5), pages 1-13, May.
    6. Chunhua Liu & K. T. Chau, 2014. "Electromagnetic Design of a New Electrically Controlled Magnetic Variable-Speed Gearing Machine," Energies, MDPI, vol. 7(3), pages 1-16, March.
    7. Chengde Tong & Zhiyi Song & Jingang Bai & Jiaqi Liu & Ping Zheng, 2016. "Analytical Investigation of the Magnetic-Field Distribution in an Axial Magnetic-Field-Modulated Brushless Double-Rotor Machine," Energies, MDPI, vol. 9(8), pages 1-23, July.
    8. Xianglin Li & K. T. Chau & Yubin Wang, 2016. "Modeling of a Field-Modulated Permanent-Magnet Machine," Energies, MDPI, vol. 9(12), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:134-:d:64523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.