IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p153-d125917.html
   My bibliography  Save this article

A Novel Dual-Permanent-Magnet-Excited Machine with Flux Strengthening Effect for Low-Speed Large-Torque Applications

Author

Listed:
  • Yujun Shi

    (Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
    Shenzhen Key Laboratory of Electric Direct Drive Technology, Shenzhen 518055, China)

  • Linni Jian

    (Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
    Shenzhen Key Laboratory of Electric Direct Drive Technology, Shenzhen 518055, China)

Abstract

This paper proposes a novel dual-permanent-magnet-excited (DPME) machine. It employs two sets of permanent magnets (PMs). One is on the rotor, the other is on the stator with PM arrays. When compared with the existing DPME machines, not all of the PMs are located in the slots formed by the iron teeth. Specifically, the radially magnetized PMs in the arrays are located under the short iron teeth, while the tangentially magnetized PMs are located in the slots formed by the long stator iron teeth and the radially magnetized PMs. Each long stator iron tooth is sandwiched by two tangentially magnetized PMs with opposite directions, thus resulting in the flux strengthening effect. The simulation analysis indicates that the proposed machine can offer large back EMF with low THD and large torque density with low torque ripple when compared with Machine I from a literature. Meanwhile, by comparison, the proposed machine has great potential in improving the power factor and efficiency.

Suggested Citation

  • Yujun Shi & Linni Jian, 2018. "A Novel Dual-Permanent-Magnet-Excited Machine with Flux Strengthening Effect for Low-Speed Large-Torque Applications," Energies, MDPI, vol. 11(1), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:153-:d:125917
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/153/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/153/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Riba, Jordi-Roger & López-Torres, Carlos & Romeral, Luís & Garcia, Antoni, 2016. "Rare-earth-free propulsion motors for electric vehicles: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 367-379.
    2. Byungtaek Kim, 2017. "Investigation on Slot–Pole Combinations of a PM Vernier Motor with Fractional-Slot Concentrated Winding Configurations," Energies, MDPI, vol. 10(9), pages 1-11, September.
    3. Ningjun Feng & Haitao Yu & Minqiang Hu & Chunyuan Liu & Lei Huang & Zhenchuan Shi, 2016. "A Study on a Linear Magnetic-Geared Interior Permanent Magnet Generator for Direct-Drive Wave Energy Conversion," Energies, MDPI, vol. 9(7), pages 1-12, June.
    4. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    5. Jin Liu & Wenxiang Zhao & Jinghua Ji & Guohai Liu & Tao Tao, 2016. "A Novel Flux Focusing Magnetically Geared Machine with Reduced Eddy Current Loss," Energies, MDPI, vol. 9(11), pages 1-15, November.
    6. Hui Yang & Heyun Lin & Zi-Qiang Zhu & Shuhua Fang & Yunkai Huang, 2016. "A Dual-Consequent-Pole Vernier Memory Machine," Energies, MDPI, vol. 9(3), pages 1-15, February.
    7. Linni Jian & Yujun Shi & Jin Wei & Yanchong Zheng & Zhengxing Deng, 2015. "Design Optimization and Analysis of a Dual-Permanent-Magnet-Excited Machine Using Response Surface Methodology," Energies, MDPI, vol. 8(9), pages 1-14, September.
    8. Chunhua Liu & K. T. Chau, 2014. "Electromagnetic Design of a New Electrically Controlled Magnetic Variable-Speed Gearing Machine," Energies, MDPI, vol. 7(3), pages 1-16, March.
    9. Daekyu Jang & Junghwan Chang, 2017. "Influences of Winding MMF Harmonics on Torque Characteristics in Surface-Mounted Permanent Magnet Vernier Machines," Energies, MDPI, vol. 10(4), pages 1-17, April.
    10. Xianglin Li & K. T. Chau & Yubin Wang, 2016. "Modeling of a Field-Modulated Permanent-Magnet Machine," Energies, MDPI, vol. 9(12), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mei Kang & Liang Xu & Jinghua Ji & Xuhui Zhu, 2022. "Design and Analysis of a High Torque Density Hybrid Permanent Magnet Excited Vernier Machine," Energies, MDPI, vol. 15(5), pages 1-16, February.
    2. Guobin Peng & Jin Wei & Yujun Shi & Ziyun Shao & Linni Jian, 2018. "A Novel Transverse Flux Permanent Magnet Disk Wind Power Generator with H-Shaped Stator Cores," Energies, MDPI, vol. 11(4), pages 1-19, March.
    3. Xiaodong Zhang & Xing Zhao & Shuangxia Niu, 2019. "A Novel Dual-Structure Parallel Hybrid Excitation Machine for Electric Vehicle Propulsion," Energies, MDPI, vol. 12(3), pages 1-11, January.
    4. Wenjie Wu & Liang Xu & Bin Liu, 2022. "Design, Analysis, and Optimization of Permanent Magnet Vernier Machines Considering Rotor Losses," Energies, MDPI, vol. 15(4), pages 1-15, February.
    5. Yunyun Chen & Yu Ding & Jiahong Zhuang & Xiaoyong Zhu, 2018. "Multi-Objective Optimization Design and Multi-Physics Analysis a Double-Stator Permanent-Magnet Doubly Salient Machine," Energies, MDPI, vol. 11(8), pages 1-15, August.
    6. Liang Xu & Wenxiang Zhao & Guohai Liu, 2019. "Improved SVPWM Fault-Tolerant Control Strategy for Five-Phase Permanent-Magnet Motor," Energies, MDPI, vol. 12(24), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Liu & Wenxiang Zhao & Jinghua Ji & Guohai Liu & Tao Tao, 2016. "A Novel Flux Focusing Magnetically Geared Machine with Reduced Eddy Current Loss," Energies, MDPI, vol. 9(11), pages 1-15, November.
    2. Linni Jian & Yujun Shi & Jin Wei & Yanchong Zheng & Zhengxing Deng, 2015. "Design Optimization and Analysis of a Dual-Permanent-Magnet-Excited Machine Using Response Surface Methodology," Energies, MDPI, vol. 8(9), pages 1-14, September.
    3. Shen-Tsu Wang, 2016. "Integrating grey sequencing with the genetic algorithm--immune algorithm to optimise touch panel cover glass polishing process parameter design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4882-4893, August.
    4. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    6. Kaushik, Lav Kumar & Muthukumar, P., 2020. "Thermal and economic performance assessments of waste cooking oil /kerosene blend operated pressure cook-stove with porous radiant burner," Energy, Elsevier, vol. 206(C).
    7. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    8. Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
    9. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    10. D. M. D. Rasika & Janak K. Vidanarachchi & Selma F. Luiz & Denise Rosane Perdomo Azeredo & Adriano G. Cruz & Chaminda Senaka Ranadheera, 2021. "Probiotic Delivery through Non-Dairy Plant-Based Food Matrices," Agriculture, MDPI, vol. 11(7), pages 1-23, June.
    11. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    12. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    13. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    14. Chamberlin Stéphane Azebaze Mboving & Zbigniew Hanzelka & Andrzej Firlit, 2022. "Analysis of the Factors Having an Influence on the LC Passive Harmonic Filter Work Efficiency," Energies, MDPI, vol. 15(5), pages 1-51, March.
    15. Lu Chen & Qincheng Chen & Pinhua Rao & Lili Yan & Alghashm Shakib & Guoqing Shen, 2018. "Formulating and Optimizing a Novel Biochar-Based Fertilizer for Simultaneous Slow-Release of Nitrogen and Immobilization of Cadmium," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    16. Biranchi Panda & K. Shankhwar & Akhil Garg & M. M. Savalani, 2019. "Evaluation of genetic programming-based models for simulating bead dimensions in wire and arc additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 809-820, February.
    17. Hasheminasab, M. & Kermani, M.J. & Nourazar, S.S. & Khodsiani, M.H., 2020. "A novel experimental based statistical study for water management in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 264(C).
    18. Zahedi, Ali Reza & Mirnezami, Seyed Abolfazl, 2020. "Experimental analysis of biomass to biodiesel conversion using a novel renewable combined cycle system," Renewable Energy, Elsevier, vol. 162(C), pages 1177-1194.
    19. Ahmad Abbaszadeh-Mayvan & Barat Ghobadian & Gholamhassan Najafi & Talal Yusaf, 2018. "Intensification of Continuous Biodiesel Production from Waste Cooking Oils Using Shockwave Power Reactor: Process Evaluation and Optimization through Response Surface Methodology (RSM)," Energies, MDPI, vol. 11(10), pages 1-13, October.
    20. Walid Yeddes & Ines Ouerghemmi & Majdi Hammami & Hamza Gadhoumi & Taycir Grati Affes & Salma Nait Mohamed & Wissem Aidi-Wannes & Dorota Witrowa-Rajchert & Moufida Saidani-Tounsi & Małgorzata Nowacka, 2022. "Optimizing the Method of Rosemary Essential Oils Extraction by Using Response Surface Methodology (RSM)-Characterization and Toxicological Assessment," Sustainability, MDPI, vol. 14(7), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:153-:d:125917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.