IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2563-d172103.html
   My bibliography  Save this article

Vibroacoustic Prediction of a High-Temperature Superconducting Field-Modulation Double-Stator Machine with Stationary Seal

Author

Listed:
  • Yubin Wang

    (College of Information and Control Engineering, China University of Petroleum (East China), Qingdao 266580, China)

  • Chenchen Zhao

    (College of Information and Control Engineering, China University of Petroleum (East China), Qingdao 266580, China)

  • Wei Xu

    (College of Information and Control Engineering, China University of Petroleum (East China), Qingdao 266580, China)

  • Xiaodong Zhang

    (Shenzhen in Drive Amperex Co. Ltd., Shen Zhen 518000, China)

Abstract

This paper predicted the vibroacoustic regularity of a high temperature superconducting (HTS) field-modulation double-stator (HTS-FMDS) machine with stationary seal for low-speed and direct-drive applications. The originality of this paper lies in that the spatial order and angular velocity of electromagnetic-force density of the HTS-FMDS machine were derived by using the analytical method. Moreover, the validity of the analytical solutions was verified by the finite element analysis (FEA) results. Then, the modal shapes and frequencies of the outer stator were obtained by using multiphysics coupling simulation. By transferring the electromagnetic force to the stator structural model, the regularity of electromagnetic vibration and noise of the HTS-FMDS machine were revealed.

Suggested Citation

  • Yubin Wang & Chenchen Zhao & Wei Xu & Xiaodong Zhang, 2018. "Vibroacoustic Prediction of a High-Temperature Superconducting Field-Modulation Double-Stator Machine with Stationary Seal," Energies, MDPI, vol. 11(10), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2563-:d:172103
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2563/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2563/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yubin Wang & Guangyong Yang & Xinkai Zhu & Xianglin Li & Wenzhong Ma, 2018. "Electromagnetic Characteristics Analysis of a High-Temperature Superconducting Field-Modulation Double-Stator Machine with Stationary Seal," Energies, MDPI, vol. 11(5), pages 1-13, May.
    2. Ping Zheng & Zhiyi Song & Jingang Bai & Chengde Tong & Bin Yu, 2013. "Research on an Axial Magnetic-Field-Modulated Brushless Double Rotor Machine," Energies, MDPI, vol. 6(9), pages 1-31, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher H. T. Lee & Chunhua Liu & K. T. Chau, 2014. "A Magnetless Axial-Flux Machine for Range-Extended Electric Vehicles," Energies, MDPI, vol. 7(3), pages 1-17, March.
    2. Chunhua Liu & K. T. Chau, 2014. "Electromagnetic Design of a New Electrically Controlled Magnetic Variable-Speed Gearing Machine," Energies, MDPI, vol. 7(3), pages 1-16, March.
    3. Yubin Wang & Guangyong Yang & Xinkai Zhu & Xianglin Li & Wenzhong Ma, 2018. "Electromagnetic Characteristics Analysis of a High-Temperature Superconducting Field-Modulation Double-Stator Machine with Stationary Seal," Energies, MDPI, vol. 11(5), pages 1-13, May.
    4. Hui Yang & Heyun Lin & Zi-Qiang Zhu & Shuhua Fang & Yunkai Huang, 2016. "A Dual-Consequent-Pole Vernier Memory Machine," Energies, MDPI, vol. 9(3), pages 1-15, February.
    5. Chengde Tong & Zhiyi Song & Jingang Bai & Jiaqi Liu & Ping Zheng, 2016. "Analytical Investigation of the Magnetic-Field Distribution in an Axial Magnetic-Field-Modulated Brushless Double-Rotor Machine," Energies, MDPI, vol. 9(8), pages 1-23, July.
    6. Xianglin Li & K. T. Chau & Yubin Wang, 2016. "Modeling of a Field-Modulated Permanent-Magnet Machine," Energies, MDPI, vol. 9(12), pages 1-15, December.
    7. Efrén Díez-Jiménez & Roberto Alcover-Sánchez & Emiliano Pereira & María Jesús Gómez García & Patricia Martínez Vián, 2019. "Design and Test of Cryogenic Cold Plate for Thermal-Vacuum Testing of Space Components," Energies, MDPI, vol. 12(15), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2563-:d:172103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.