IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i16p4336-d1724552.html
   My bibliography  Save this article

Evolution of Shipboard Motor Failure Monitoring Technology: Multi-Physics Field Mechanism Modeling and Intelligent Operation and Maintenance System Integration

Author

Listed:
  • Jun Sun

    (College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China)

  • Pan Sun

    (College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China)

  • Boyu Lin

    (School of Automation, Wuhan University of Technology, Wuhan 430070, China)

  • Weibo Li

    (School of Automation, Wuhan University of Technology, Wuhan 430070, China
    College of Electrical Engineering, Northwest Minzu University, Lanzhou 730124, China)

Abstract

As a core component of both the ship propulsion system and mission-critical equipment, shipboard motors are undergoing a technological transition from traditional fault diagnosis to multi-physical-field collaborative modeling and integrated intelligent maintenance systems. This paper provides a systematic review of recent advances in shipboard motor fault monitoring, with a focus on key technical challenges under complex service environments, and offers several innovative insights and analyses in the following aspects. First, regarding the fault evolution under electromagnetic–thermal–mechanical coupling, this study summarizes the typical fault mechanisms, such as bearing electrical erosion, rotor eccentricity, permanent magnet demagnetization, and insulation aging, and analyzes their modeling approaches and multi-physics coupling evolution paths. Second, in response to the problem of multi-source signal fusion, the applicability and limitations of feature extraction methods—including current analysis, vibration demodulation, infrared thermography, and Dempster–Shafer (D-S) evidence theory—are evaluated, providing a basis for designing subsequent signal fusion strategies. With respect to intelligent diagnostic models, this paper compares model-driven and data-driven approaches in terms of their suitability for different scenarios, highlighting their complementarity and integration potential in the complex operating conditions of shipboard motors. Finally, considering practical deployment needs, the key aspects of monitoring platform implementation under shipborne edge computing environments are discussed. The study also identifies current research gaps and proposes future directions, such as digital twin-driven intelligent maintenance, fleet-level PHM collaborative management, and standardized health data transmission. In summary, this paper offers a comprehensive analysis in the areas of fault mechanism modeling, feature extraction method evaluation, and system deployment frameworks, aiming to provide a theoretical reference and engineering insights for the advancement of shipboard motor health management technologies.

Suggested Citation

  • Jun Sun & Pan Sun & Boyu Lin & Weibo Li, 2025. "Evolution of Shipboard Motor Failure Monitoring Technology: Multi-Physics Field Mechanism Modeling and Intelligent Operation and Maintenance System Integration," Energies, MDPI, vol. 18(16), pages 1-25, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4336-:d:1724552
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/16/4336/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/16/4336/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Junxiang Li & Ziang Li & Jian Zhang & Shuyuan Zhao & Feitian Cheng & Chuan Qian & Xingyu Hu & Guoxiang Zhou, 2023. "Automated Monitoring of the Uniform Demagnetization Faults in Permanent-Magnet Synchronous Motors: Practical Methods and Challenges," Sustainability, MDPI, vol. 15(23), pages 1-22, November.
    2. Muhammad Usman Sardar & Toomas Vaimann & Lauri Kütt & Ants Kallaste & Bilal Asad & Siddique Akbar & Karolina Kudelina, 2023. "Inverter-Fed Motor Drive System: A Systematic Analysis of Condition Monitoring and Practical Diagnostic Techniques," Energies, MDPI, vol. 16(15), pages 1-41, July.
    3. Rahul R. Kumar & Mauro Andriollo & Giansalvo Cirrincione & Maurizio Cirrincione & Andrea Tortella, 2022. "A Comprehensive Review of Conventional and Intelligence-Based Approaches for the Fault Diagnosis and Condition Monitoring of Induction Motors," Energies, MDPI, vol. 15(23), pages 1-36, November.
    4. Lorin Jenkel & Stefan Jonas & Angela Meyer, 2023. "Privacy-Preserving Fleet-Wide Learning of Wind Turbine Conditions with Federated Learning," Energies, MDPI, vol. 16(17), pages 1-29, September.
    5. Karolina Kudelina & Bilal Asad & Toomas Vaimann & Anton Rassõlkin & Ants Kallaste & Huynh Van Khang, 2021. "Methods of Condition Monitoring and Fault Detection for Electrical Machines," Energies, MDPI, vol. 14(22), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Usman Sardar & Toomas Vaimann & Lauri Kütt & Ants Kallaste & Bilal Asad & Siddique Akbar & Karolina Kudelina, 2023. "Inverter-Fed Motor Drive System: A Systematic Analysis of Condition Monitoring and Practical Diagnostic Techniques," Energies, MDPI, vol. 16(15), pages 1-41, July.
    2. Prince & Byungun Yoon & Prashant Kumar, 2025. "Enhanced Fault Diagnosis of Drive-Fed Induction Motors Using a Multi-Scale Wide-Kernel CNN," Mathematics, MDPI, vol. 13(18), pages 1-18, September.
    3. Alejandro Sanz & Peter Meyer, 2024. "Electrifying the Last-Mile Logistics (LML) in Intensive B2B Operations—An European Perspective on Integrating Innovative Platforms," Logistics, MDPI, vol. 8(2), pages 1-39, April.
    4. Toomas Vaimann & Jose Alfonso Antonino-Daviu & Anton Rassõlkin, 2023. "Novel Approaches to Electrical Machine Fault Diagnosis," Energies, MDPI, vol. 16(15), pages 1-4, July.
    5. Viktor Rjabtšikov & Anton Rassõlkin & Karolina Kudelina & Ants Kallaste & Toomas Vaimann, 2023. "Review of Electric Vehicle Testing Procedures for Digital Twin Development: A Comprehensive Analysis," Energies, MDPI, vol. 16(19), pages 1-17, October.
    6. Razan Issa & Guy Clerc & Malorie Hologne-Carpentier & Ryan Michaud & Eric Lorca & Christophe Magnette & Anes Messadi, 2024. "Review of Fault Diagnosis Methods for Induction Machines in Railway Traction Applications," Energies, MDPI, vol. 17(11), pages 1-24, June.
    7. Lan Li & Juncheng Zhou & Qiankun Peng & Quan Zhou & Haoming Zhang, 2025. "Consensus-Regularized Federated Learning for Superior Generalization in Wind Turbine Diagnostics," Mathematics, MDPI, vol. 13(16), pages 1-15, August.
    8. Jose R. Huerta-Rosales & David Granados-Lieberman & Juan P. Amezquita-Sanchez & Arturo Garcia-Perez & Maximiliano Bueno-Lopez & Martin Valtierra-Rodriguez, 2022. "Contrast Estimation in Vibroacoustic Signals for Diagnosing Early Faults of Short-Circuited Turns in Transformers under Different Load Conditions," Energies, MDPI, vol. 15(22), pages 1-15, November.
    9. Sebastian Berhausen & Tomasz Jarek, 2022. "Analysis of Impact of Design Solutions of an Electric Machine with Permanent Magnets for Bearing Voltages with Inverter Power Supply," Energies, MDPI, vol. 15(12), pages 1-19, June.
    10. Arooj, Qumrish, 2024. "FedWindT: Federated learning assisted transformer architecture for collaborative and secure wind power forecasting in diverse conditions," Energy, Elsevier, vol. 309(C).
    11. Mikko Tahkola & Áron Szücs & Jari Halme & Akhtar Zeb & Janne Keränen, 2022. "A Novel Machine Learning-Based Approach for Induction Machine Fault Classifier Development—A Broken Rotor Bar Case Study," Energies, MDPI, vol. 15(9), pages 1-23, May.
    12. Taha Ahmad Hussein & Dahaman Ishak & Mohamad Tarnini, 2024. "A Three-Phase Multilevel Inverter Synthesized with 31 Levels and Optimal Gating Angles Based on the GA and GWO to Supply a Three-Phase Induction Motor," Energies, MDPI, vol. 17(5), pages 1-22, March.
    13. Hadi Ashraf Raja & Karolina Kudelina & Bilal Asad & Toomas Vaimann & Ants Kallaste & Anton Rassõlkin & Huynh Van Khang, 2022. "Signal Spectrum-Based Machine Learning Approach for Fault Prediction and Maintenance of Electrical Machines," Energies, MDPI, vol. 15(24), pages 1-16, December.
    14. Krzysztof Kolano & Artur Jan Moradewicz & Bartosz Drzymała & Jakub Gęca, 2022. "Influence of the Placement Accuracy of the Brushless DC Motor Hall Sensor on Inverter Transistor Losses," Energies, MDPI, vol. 15(5), pages 1-13, March.
    15. Hoffstaedt, J.P. & Truijen, D.P.K. & Fahlbeck, J. & Gans, L.H.A. & Qudaih, M. & Laguna, A.J. & De Kooning, J.D.M. & Stockman, K. & Nilsson, H. & Storli, P.-T. & Engel, B. & Marence, M. & Bricker, J.D., 2022. "Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    16. Shahin Hedayati Kia & Larisa Dunai & José Alfonso Antonino-Daviu & Hubert Razik, 2025. "Real-Time Digital Twins for Intelligent Fault Diagnosis and Condition-Based Monitoring of Electrical Machines," Energies, MDPI, vol. 18(17), pages 1-29, August.
    17. Ahmed Belkhadir & Remus Pusca & Driss Belkhayat & Raphaël Romary & Youssef Zidani, 2023. "Analytical Modeling, Analysis and Diagnosis of External Rotor PMSM with Stator Winding Unbalance Fault," Energies, MDPI, vol. 16(7), pages 1-23, April.
    18. Davide Astolfi & Silvia Iuliano & Antony Vasile & Marco Pasetti & Salvatore Dello Iacono & Alfredo Vaccaro, 2024. "Wind Turbine Static Errors Related to Yaw, Pitch or Anemometer Apparatus: Guidelines for the Diagnosis and Related Performance Assessment," Energies, MDPI, vol. 17(24), pages 1-34, December.
    19. Reza Bazghandi & Mohammad Hoseintabar Marzebali & Vahid Abolghasemi & Shahin Hedayati Kia, 2023. "A Novel Mode Un-Mixing Approach in Variational Mode Decomposition for Fault Detection in Wound Rotor Induction Machines," Energies, MDPI, vol. 16(14), pages 1-17, July.
    20. Chao Huang & Siqi Bu & Hiu Hung Lee & Kwong Wah Chan & Winco K. C. Yung, 2024. "Prognostics and health management for induction machines: a comprehensive review," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 937-962, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4336-:d:1724552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.