IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i1p212-d474149.html
   My bibliography  Save this article

Understanding Membrane Fouling in Electrically Driven Energy Conversion Devices

Author

Listed:
  • Soo-Jin Han

    (Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Korea)

  • Jin-Soo Park

    (Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Korea)

Abstract

Positively charged (cetylpyridinium chloride), negatively charged (sodium dodecyl sulfate), and non-charged (polyethylene glycol) surfactants are used as potential foulant in reverse electrodialysis systems supplying seawater and river freshwater. Fouling tendency of the foulants to ion-exchange membranes is investigated in terms of the adsorption by electromigration, electrostatic attraction, and macromolecule interaction in reverse electrodialysis systems. According to theoretical prediction of fouling tendency, charged foulants in seawater streams could foul ion-exchange membranes significantly. However, the worst fouling behavior is observed when the charged foulants are present in river streams. As a result of zeta potential measurement, it is found that the Debye length of the charged foulants decreases due to the higher ionic strength of seawater streams and causes to lower net electrostatic effect. It finally results in less fouling tendency in reverse electrodialysis.

Suggested Citation

  • Soo-Jin Han & Jin-Soo Park, 2021. "Understanding Membrane Fouling in Electrically Driven Energy Conversion Devices," Energies, MDPI, vol. 14(1), pages 1-11, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:1:p:212-:d:474149
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/212/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/212/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kjersti Wergeland Krakhella & Robert Bock & Odne Stokke Burheim & Frode Seland & Kristian Etienne Einarsrud, 2019. "Heat to H 2 : Using Waste Heat for Hydrogen Production through Reverse Electrodialysis," Energies, MDPI, vol. 12(18), pages 1-25, September.
    2. Alejandro Clemente & Ramon Costa-Castelló, 2020. "Redox Flow Batteries: A Literature Review Oriented to Automatic Control," Energies, MDPI, vol. 13(17), pages 1-31, September.
    3. Kjersti Wergeland Krakhella & Marjorie Morales & Robert Bock & Frode Seland & Odne Stokke Burheim & Kristian Etienne Einarsrud, 2020. "Electrodialytic Energy Storage System: Permselectivity, Stack Measurements and Life-Cycle Analysis," Energies, MDPI, vol. 13(5), pages 1-26, March.
    4. Joost Veerman, 2020. "The Effect of the NaCl Bulk Concentration on the Resistance of Ion Exchange Membranes—Measuring and Modeling," Energies, MDPI, vol. 13(8), pages 1-24, April.
    5. Yunhyun Lee & Hyun Jung Kim & Dong-Kwon Kim, 2020. "Power Generation from Concentration Gradient by Reverse Electrodialysis in Anisotropic Nanoporous Anodic Aluminum Oxide Membranes," Energies, MDPI, vol. 13(4), pages 1-15, February.
    6. Li, Weiyi & Krantz, William B. & Cornelissen, Emile R. & Post, Jan W. & Verliefde, Arne R.D. & Tang, Chuyang Y., 2013. "A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management," Applied Energy, Elsevier, vol. 104(C), pages 592-602.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon B. B. Solberg & Pauline Zimmermann & Øivind Wilhelmsen & Jacob J. Lamb & Robert Bock & Odne S. Burheim, 2022. "Heat to Hydrogen by Reverse Electrodialysis—Using a Non-Equilibrium Thermodynamics Model to Evaluate Hydrogen Production Concepts Utilising Waste Heat," Energies, MDPI, vol. 15(16), pages 1-22, August.
    2. Robert Bock & Björn Kleinsteinberg & Bjørn Selnes-Volseth & Odne Stokke Burheim, 2021. "A Novel Iron Chloride Red-Ox Concentration Flow Cell Battery (ICFB) Concept; Power and Electrode Optimization," Energies, MDPI, vol. 14(4), pages 1-12, February.
    3. Tian, Hailong & Wang, Ying & Pei, Yuansheng & Crittenden, John C., 2020. "Unique applications and improvements of reverse electrodialysis: A review and outlook," Applied Energy, Elsevier, vol. 262(C).
    4. Ali Cemal Benim & Björn Pfeiffelmann, 2019. "Comparison of Combustion Models for Lifted Hydrogen Flames within RANS Framework," Energies, MDPI, vol. 13(1), pages 1-24, December.
    5. Wan, Chun Feng & Chung, Tai-Shung, 2016. "Energy recovery by pressure retarded osmosis (PRO) in SWRO–PRO integrated processes," Applied Energy, Elsevier, vol. 162(C), pages 687-698.
    6. Ihsan Hamawand & Anas Ghadouani & Jochen Bundschuh & Sara Hamawand & Raed A. Al Juboori & Sayan Chakrabarty & Talal Yusaf, 2017. "A Critical Review on Processes and Energy Profile of the Australian Meat Processing Industry," Energies, MDPI, vol. 10(5), pages 1-29, May.
    7. José Manuel Andújar & Francisca Segura & Jesús Rey & Francisco José Vivas, 2022. "Batteries and Hydrogen Storage: Technical Analysis and Commercial Revision to Select the Best Option," Energies, MDPI, vol. 15(17), pages 1-32, August.
    8. Kjersti Wergeland Krakhella & Marjorie Morales & Robert Bock & Frode Seland & Odne Stokke Burheim & Kristian Etienne Einarsrud, 2020. "Electrodialytic Energy Storage System: Permselectivity, Stack Measurements and Life-Cycle Analysis," Energies, MDPI, vol. 13(5), pages 1-26, March.
    9. Chen, Man & Mei, Ying & Yu, Yuqing & Zeng, Raymond Jianxiong & Zhang, Fang & Zhou, Shungui & Tang, Chuyang Y., 2019. "An internal-integrated RED/ED system for energy-saving seawater desalination: A model study," Energy, Elsevier, vol. 170(C), pages 139-148.
    10. Wan, Chun Feng & Chung, Tai-Shung, 2018. "Techno-economic evaluation of various RO+PRO and RO+FO integrated processes," Applied Energy, Elsevier, vol. 212(C), pages 1038-1050.
    11. Sumina Namboorimadathil Backer & Ines Bouaziz & Nabeela Kallayi & Reny Thankam Thomas & Gopika Preethikumar & Mohd Sobri Takriff & Tahar Laoui & Muataz Ali Atieh, 2022. "Review: Brine Solution: Current Status, Future Management and Technology Development," Sustainability, MDPI, vol. 14(11), pages 1-47, May.
    12. Abdul Ghani Olabi & Enas Taha Sayed & Tabbi Wilberforce & Aisha Jamal & Abdul Hai Alami & Khaled Elsaid & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Mohammad Ali Abdelkareem, 2021. "Metal-Air Batteries—A Review," Energies, MDPI, vol. 14(21), pages 1-46, November.
    13. Weichao Peng & Shuaihu Yan & Ke Zhou & Hai-Chen Wu & Lei Liu & Yuliang Zhao, 2023. "High-resolution discrimination of homologous and isomeric proteinogenic amino acids in nanopore sensors with ultrashort single-walled carbon nanotubes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Iñigo Aramendia & Unai Fernandez-Gamiz & Adrian Martinez-San-Vicente & Ekaitz Zulueta & Jose Manuel Lopez-Guede, 2020. "Vanadium Redox Flow Batteries: A Review Oriented to Fluid-Dynamic Optimization," Energies, MDPI, vol. 14(1), pages 1-20, December.
    15. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    16. Tufa, Ramato Ashu & Noviello, Ylenia & Di Profio, Gianluca & Macedonio, Francesca & Ali, Aamer & Drioli, Enrico & Fontananova, Enrica & Bouzek, Karel & Curcio, Efrem, 2019. "Integrated membrane distillation-reverse electrodialysis system for energy-efficient seawater desalination," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Miquel Martí-Florences & Andreu Cecilia & Ramon Costa-Castelló, 2023. "Modelling and Estimation in Lithium-Ion Batteries: A Literature Review," Energies, MDPI, vol. 16(19), pages 1-36, September.
    18. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.
    19. Ioannis Karakitsios & Aris Dimeas & Nikos Hatziargyriou, 2020. "Optimal Management of the Desalination System Demand in Non-Interconnected Islands," Energies, MDPI, vol. 13(15), pages 1-20, August.
    20. Iliya Krastev Iliev & Andrey Alexandrovich Chichirov & Antonina Andreevna Filimonova & Natalia Dmitrievna Chichirova & Alexander Vadimovich Pechenkin & Ivan Hristov Beloev, 2023. "Development of Hybrid Membrane Systems for Highly Mineralized Waste Utilization in the Power Industry," Energies, MDPI, vol. 16(17), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:1:p:212-:d:474149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.