IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6010-d640326.html
   My bibliography  Save this article

An Integrated Device of a Lithium-Ion Battery Combined with Silicon Solar Cells

Author

Listed:
  • Hyeonsu Lim

    (School of Advanced Materials Engineering, Research Center for Advanced Materials Development (RCAMD), Jeonbuk National University, Baekje-daero 567, Jeonju 54896, Korea)

  • Dan Na

    (School of Advanced Materials Engineering, Research Center for Advanced Materials Development (RCAMD), Jeonbuk National University, Baekje-daero 567, Jeonju 54896, Korea)

  • Cheul-Ro Lee

    (School of Advanced Materials Engineering, Research Center for Advanced Materials Development (RCAMD), Jeonbuk National University, Baekje-daero 567, Jeonju 54896, Korea)

  • Hyung-Kee Seo

    (Future Energy Convergence Core Center, School of Chemical Engineering, Jeonbuk National University, Baekje-daero 567, Jeonju 54896, Korea)

  • O-Hyeon Kwon

    (Department of Solar & Energy Engineering, Cheongju University, Cheongju 360-764, Korea)

  • Jae-Kwang Kim

    (Department of Solar & Energy Engineering, Cheongju University, Cheongju 360-764, Korea)

  • Inseok Seo

    (School of Advanced Materials Engineering, Research Center for Advanced Materials Development (RCAMD), Jeonbuk National University, Baekje-daero 567, Jeonju 54896, Korea)

Abstract

This study reports an integrated device of a lithium-ion battery (LIB) connected with Si solar cells. A Li(Ni 0.65 Co 0.15 Mn 0.20 )O 2 (NCM) cathode and a graphite (G) anode were used to fabricate the lithium-ion battery (LIB). The surface and shape morphologies of NCM and graphite powder were characterized by field emission scanning electron microscopy (FE-SEM). The structural properties of NCM and graphite powder were determined by X-ray diffraction (XRD) analysis. XRD patterns of powders were well matched with those of JCPDS data. To investigate the electrochemical characteristics of NCM and graphite, cycling tests were performed after assembling the NCM-Li, the G-Li half-cell, and the NCM-G full-cell. The discharge capacity of the NCM cathode at 0.1C was 189.82 mAh/g −1 . The NCM-graphite full-cell showed 98.25% cycle retention at 1C after 50 cycles. To obtain enough charging voltage for the LIB connected with solar cells in an integrated device, eight single Si solar cells were connected in a series. The short-circuit photocurrent density for Si solar cells was 4.124 mA/cm 2 . The fill factor and the open circuit voltage were 0.78 and 4.5 V, respectively. These Si solar cells showed a power conversion efficiency of 14.45%. The power conversion andstorage efficiency of the integrated device of the NCM battery and Si solar cells was 7.74%. Charging of the integrated device could be as effective as charging with a battery cycler.

Suggested Citation

  • Hyeonsu Lim & Dan Na & Cheul-Ro Lee & Hyung-Kee Seo & O-Hyeon Kwon & Jae-Kwang Kim & Inseok Seo, 2021. "An Integrated Device of a Lithium-Ion Battery Combined with Silicon Solar Cells," Energies, MDPI, vol. 14(19), pages 1-11, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6010-:d:640326
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6010/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6010/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lupangu, C. & Bansal, R.C., 2017. "A review of technical issues on the development of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 950-965.
    2. Yusuke Abe & Natsuki Hori & Seiji Kumagai, 2019. "Electrochemical Impedance Spectroscopy on the Performance Degradation of LiFePO 4 /Graphite Lithium-Ion Battery Due to Charge-Discharge Cycling under Different C-Rates," Energies, MDPI, vol. 12(23), pages 1-14, November.
    3. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    4. Jaw-Kuen Shiau & Chien-Wei Ma, 2013. "Li-Ion Battery Charging with a Buck-Boost Power Converter for a Solar Powered Battery Management System," Energies, MDPI, vol. 6(3), pages 1-31, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruixia Chu & Yujian Zou & Peidong Zhu & Shiwei Tan & Fangyuan Qiu & Wenjun Fu & Fu Niu & Wanyou Huang, 2022. "Progress of Single-Crystal Nickel-Cobalt-Manganese Cathode Research," Energies, MDPI, vol. 15(23), pages 1-32, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    2. Agnieszka Żelazna & Justyna Gołębiowska & Agata Zdyb & Artur Pawłowski, 2020. "A Hybrid vs. On-Grid Photovoltaic System: Multicriteria Analysis of Environmental, Economic, and Technical Aspects in Life Cycle Perspective," Energies, MDPI, vol. 13(15), pages 1-16, August.
    3. Antonio Rosato & Antonio Ciervo & Giovanni Ciampi & Michelangelo Scorpio & Sergio Sibilio, 2020. "Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage," Energies, MDPI, vol. 13(20), pages 1-40, October.
    4. Yin, Rumeng & He, Jiang, 2023. "Design of a photovoltaic electric bike battery-sharing system in public transit stations," Applied Energy, Elsevier, vol. 332(C).
    5. Liang Zhang & Shunli Wang & Daniel-Ioan Stroe & Chuanyun Zou & Carlos Fernandez & Chunmei Yu, 2020. "An Accurate Time Constant Parameter Determination Method for the Varying Condition Equivalent Circuit Model of Lithium Batteries," Energies, MDPI, vol. 13(8), pages 1-12, April.
    6. Md Ohirul Qays & Yonis Buswig & Md Liton Hossain & Ahmed Abu-Siada, 2020. "Active Charge Balancing Strategy Using the State of Charge Estimation Technique for a PV-Battery Hybrid System," Energies, MDPI, vol. 13(13), pages 1-16, July.
    7. AL-Rasheedi, Majed & Gueymard, Christian A. & Al-Khayat, Mohammad & Ismail, Alaa & Lee, Jared A. & Al-Duaj, Hamad, 2020. "Performance evaluation of a utility-scale dual-technology photovoltaic power plant at the Shagaya Renewable Energy Park in Kuwait," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Andrea Marchioni & Carlo Alberto Magni & Davide Baschieri, 2020. "Investment and Financing Perspectives for a Solar Photovoltaic Project," MIC 2020: The 20th Management International Conference,, University of Primorska Press.
    9. Tao Yin & Longzhou Jia & Xichao Li & Lili Zheng & Zuoqiang Dai, 2022. "Effect of High-Rate Cycle Aging and Over-Discharge on NCM811 (LiNi0.8Co0.1Mn0.1O2) Batteries," Energies, MDPI, vol. 15(8), pages 1-15, April.
    10. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2021. "Rate design with distributed energy resources and electric vehicles: A Californian case study," Energy Economics, Elsevier, vol. 102(C).
    11. Maria M. Symeonidou & Effrosyni Giama & Agis M. Papadopoulos, 2021. "Life Cycle Assessment for Supporting Dimensioning Battery Storage Systems in Micro-Grids for Residential Applications," Energies, MDPI, vol. 14(19), pages 1-16, September.
    12. Sam Wilkinson & Michele John & Gregory M. Morrison, 2021. "Rooftop PV and the Renewable Energy Transition; a Review of Driving Forces and Analytical Frameworks," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    13. Sun, Bohan & Gao, Ke & Liu, Shuai & Wei, Qiaoqiao & Wang, Hui, 2023. "Assessing the performance and economic viability of solar home systems: A way forward towards clean energy exploration and consumption," Renewable Energy, Elsevier, vol. 208(C), pages 409-419.
    14. Robert Olszewski & Piotr Pałka & Agnieszka Wendland & Jacek Kamiński, 2019. "A Multi-Agent Social Gamification Model to Guide Sustainable Urban Photovoltaic Panels Installation Policies," Energies, MDPI, vol. 12(15), pages 1-27, August.
    15. Liu, Jia & Cao, Sunliang & Chen, Xi & Yang, Hongxing & Peng, Jinqing, 2021. "Energy planning of renewable applications in high-rise residential buildings integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 281(C).
    16. Yannick Perez & Wale Arowolo, 2021. "Economics of Electric Mobility: Utilities and Electric mobility," Working Papers hal-03522048, HAL.
    17. Peter Tauš & Marcela Taušová & Peter Sivák & Mária Shejbalová Muchová & Eva Mihaliková, 2020. "Parameter Optimization Model Photovoltaic Battery System for Charging Electric Cars," Energies, MDPI, vol. 13(17), pages 1-17, September.
    18. Lauvergne, Rémi & Perez, Yannick & Françon, Mathilde & Tejeda De La Cruz, Alberto, 2022. "Integration of electric vehicles into transmission grids: A case study on generation adequacy in Europe in 2040," Applied Energy, Elsevier, vol. 326(C).
    19. Moustafa Shahin & Evangelia Topriska & Mutasim Nour & Michael Gormley, 2020. "Evaluation of Distributed Energy Resource Interconnection Codes and Grid Ancillary Services of Photovoltaic Inverters: A Case Study on Dubai Solar Programme," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 512-520.
    20. Li, Xianshan & Lu, Mingfang & Li, Fei & Xiong, Wei & Li, Zhenxing, 2022. "Prosumer energy-storage trading feasibility evaluation and price bundling," Energy, Elsevier, vol. 239(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6010-:d:640326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.