IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4507-d291381.html
   My bibliography  Save this article

Electrochemical Impedance Spectroscopy on the Performance Degradation of LiFePO 4 /Graphite Lithium-Ion Battery Due to Charge-Discharge Cycling under Different C-Rates

Author

Listed:
  • Yusuke Abe

    (Department of Mathematical Science and Electrical-Electronic-Computer Engineering, Akita University, Tegatagakuen-machi 1-1, Akita 010-8502, Japan)

  • Natsuki Hori

    (Department of Mathematical Science and Electrical-Electronic-Computer Engineering, Akita University, Tegatagakuen-machi 1-1, Akita 010-8502, Japan)

  • Seiji Kumagai

    (Department of Mathematical Science and Electrical-Electronic-Computer Engineering, Akita University, Tegatagakuen-machi 1-1, Akita 010-8502, Japan)

Abstract

Lithium-ion batteries (LIBs) using a LiFePO 4 cathode and graphite anode were assembled in coin cell form and subjected to 1000 charge-discharge cycles at 1, 2, and 5 C at 25 °C. The performance degradation of the LIB cells under different C-rates was analyzed by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy. The most severe degradation occurred at 2 C while degradation was mitigated at the highest C-rate of 5 C. EIS data of the equivalent circuit model provided information on the changes in the internal resistance. The charge-transfer resistance within all the cells increased after the cycle test, with the cell cycled at 2 C presenting the greatest increment in the charge-transfer resistance. Agglomerates were observed on the graphite anodes of the cells cycled at 2 and 5 C; these were more abundantly produced in the former cell. The lower degradation of the cell cycled at 5 C was attributed to the lowered capacity utilization of the anode. The larger cell voltage drop caused by the increased C-rate reduced the electrode potential variation allocated to the net electrochemical reactions, contributing to the charge-discharge specific capacity of the cells.

Suggested Citation

  • Yusuke Abe & Natsuki Hori & Seiji Kumagai, 2019. "Electrochemical Impedance Spectroscopy on the Performance Degradation of LiFePO 4 /Graphite Lithium-Ion Battery Due to Charge-Discharge Cycling under Different C-Rates," Energies, MDPI, vol. 12(23), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4507-:d:291381
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4507/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4507/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Yin & Longzhou Jia & Xichao Li & Lili Zheng & Zuoqiang Dai, 2022. "Effect of High-Rate Cycle Aging and Over-Discharge on NCM811 (LiNi0.8Co0.1Mn0.1O2) Batteries," Energies, MDPI, vol. 15(8), pages 1-15, April.
    2. Hyeonsu Lim & Dan Na & Cheul-Ro Lee & Hyung-Kee Seo & O-Hyeon Kwon & Jae-Kwang Kim & Inseok Seo, 2021. "An Integrated Device of a Lithium-Ion Battery Combined with Silicon Solar Cells," Energies, MDPI, vol. 14(19), pages 1-11, September.
    3. Liang Zhang & Shunli Wang & Daniel-Ioan Stroe & Chuanyun Zou & Carlos Fernandez & Chunmei Yu, 2020. "An Accurate Time Constant Parameter Determination Method for the Varying Condition Equivalent Circuit Model of Lithium Batteries," Energies, MDPI, vol. 13(8), pages 1-12, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4507-:d:291381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.