IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5797-d635158.html
   My bibliography  Save this article

Hierarchical Auto-Ignition and Structure-Reactivity Trends of C 2 –C 4 1-Alkenes

Author

Listed:
  • Wuchuan Sun

    (State Key Laboratory of Multiphase Flows in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Yingjia Zhang

    (State Key Laboratory of Multiphase Flows in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Yang Li

    (Science and Technology on Combustion, Internal Flow and Thermostructure Laboratory, School of Astronauties, Northwestern Polytechnical University, Xi’an 710072, China)

  • Zuohua Huang

    (State Key Laboratory of Multiphase Flows in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

Ignition delay times of small alkenes are a valuable constraint for the refinement of the core kinetic mechanism of hydrocarbons used in representing combustion properties of real fuels. Moreover, the chemical reactivity comparison of those small alkenes provides a reference in object-oriented fuel design and logical combustion utilization. In this study, the ignition delay times of C 2 –C 4 alkenes (ethylene, propene and 1-butene) were measured behind reflected shock waves first, with a fixed oxygen concentration ( X O2 = 6%) and equivalence ratio ( φ = 1.0) at various pressures of 1.2, 4.0 and 16.0 atm, in order to facilitate the comparison. Three chemical-based-Arrhenius-type correlations covering a wide range of temperature, pressure, equivalence ratio, and dilution were proposed. The simplified reaction network for pyrolysis and oxidation of 1-alkenes was depicted relying on the reaction classes of alkenes. Nine generally accepted mechanisms were used to simulate the ignition delay times measured by this study as well as literature. All the kinetic models show reasonable structure-reactivity trends for all of the three alkenes, but only NUIGMech 1.1 is capable of representing quantificationally the chemical reactivity at all tested conditions. Generally, ethylene exhibits the highest reactivity while propene presents the lowest at high temperatures. Analyses of sensitivity and flux indicate that the main oxidation pathway of ethylene is chain-branching, which accelerates the accumulation of free radical pools, especially for the Ḣ atom, Ȯ atom and ȮH radical, which results in the highest reactivity of ethylene. For propene and 1-butene, due to the presence of the allylic site, consumption of allylic radicals becomes the decisive step of oxidation and allylic radicals are mostly consumed by the HȮ 2 radical. However, there are no such efficient reaction pathways for the formation of HȮ 2 radicals during the propene oxidation process, while reaction pathways for HȮ 2 formation in 1-butene are efficient. Thus, 1-butene presents higher reactivity compared to propene.

Suggested Citation

  • Wuchuan Sun & Yingjia Zhang & Yang Li & Zuohua Huang, 2021. "Hierarchical Auto-Ignition and Structure-Reactivity Trends of C 2 –C 4 1-Alkenes," Energies, MDPI, vol. 14(18), pages 1-31, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5797-:d:635158
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5797/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5797/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cullen, Jonathan M. & Allwood, Julian M., 2010. "The efficient use of energy: Tracing the global flow of energy from fuel to service," Energy Policy, Elsevier, vol. 38(1), pages 75-81, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    2. Omar Shafqat & Elena Malakhtka & Nina Chrobot & Per Lundqvist, 2021. "End Use Energy Services Framework Co-Creation with Multiple Stakeholders—A Living Lab-Based Case Study," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    3. Kim, Yeong Jae & Wilson, Charlie, 2019. "Analysing energy innovation portfolios from a systemic perspective," Energy Policy, Elsevier, vol. 134(C).
    4. Cullen, Jonathan M. & Allwood, Julian M., 2010. "Theoretical efficiency limits for energy conversion devices," Energy, Elsevier, vol. 35(5), pages 2059-2069.
    5. Brand-Correa, Lina I. & Steinberger, Julia K., 2017. "A Framework for Decoupling Human Need Satisfaction From Energy Use," Ecological Economics, Elsevier, vol. 141(C), pages 43-52.
    6. Jin, Taeyoung, 2022. "Impact of heat and electricity consumption on energy intensity: A panel data analysis," Energy, Elsevier, vol. 239(PA).
    7. Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
    8. Biying Yu & Guangpu Zhao & Runying An, 2019. "Framing the picture of energy consumption in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1469-1490, December.
    9. Paoli, Leonardo & Lupton, Richard C. & Cullen, Jonathan M., 2018. "Useful energy balance for the UK: An uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 176-188.
    10. Sousa, Tânia & Brockway, Paul E. & Cullen, Jonathan M. & Henriques, Sofia Teives & Miller, Jack & Serrenho, André Cabrera & Domingos, Tiago, 2017. "The Need for Robust, Consistent Methods in Societal Exergy Accounting," Ecological Economics, Elsevier, vol. 141(C), pages 11-21.
    11. Ioan G. Pop & Sebastian Văduva & Mihai-Florin Talpoș, 2017. "Energetic Sustainability and the Environment: A Transdisciplinary, Economic–Ecological Approach," Sustainability, MDPI, vol. 9(6), pages 1-12, May.
    12. Morley, Janine, 2018. "Rethinking energy services: The concept of ‘meta-service’ and implications for demand reduction and servicizing policy," Energy Policy, Elsevier, vol. 122(C), pages 563-569.
    13. Mukuve, Feriha Mugisha & Fenner, Richard A., 2015. "The influence of water, land, energy and soil-nutrient resource interactions on the food system in Uganda," Food Policy, Elsevier, vol. 51(C), pages 24-37.
    14. Craglia, Matteo & Cullen, Jonathan, 2019. "Do technical improvements lead to real efficiency gains? Disaggregating changes in transport energy intensity," Energy Policy, Elsevier, vol. 134(C).
    15. Zhang, Pengpeng & Zhang, Lixiao & Tian, Xin & Hao, Yan & Wang, Changbo, 2018. "Urban energy transition in China: Insights from trends, socioeconomic drivers, and environmental impacts of Beijing," Energy Policy, Elsevier, vol. 117(C), pages 173-183.
    16. Chong, Chin Hao & Zhou, Xiaoyong & Zhang, Yongchuang & Ma, Linwei & Bhutta, Muhammad Shoaib & Li, Zheng & Ni, Weidou, 2023. "LMDI decomposition of coal consumption in China based on the energy allocation diagram of coal flows: An update for 2005–2020 with improved sectoral resolutions," Energy, Elsevier, vol. 285(C).
    17. Qin, Ying & Curmi, Elizabeth & Kopec, Grant M. & Allwood, Julian M. & Richards, Keith S., 2015. "China's energy-water nexus – assessment of the energy sector's compliance with the “3 Red Lines” industrial water policy," Energy Policy, Elsevier, vol. 82(C), pages 131-143.
    18. Elizabeth Curmi & Richard Fenner & Keith Richards & Julian Allwood & Bojana Bajželj & Grant Kopec, 2013. "Visualising a Stochastic Model of Californian Water Resources Using Sankey Diagrams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3035-3050, June.
    19. Konadu, D. Dennis & Mourão, Zenaida Sobral & Allwood, Julian M. & Richards, Keith S. & Kopec, Grant & McMahon, Richard & Fenner, Richard, 2015. "Land use implications of future energy system trajectories—The case of the UK 2050 Carbon Plan," Energy Policy, Elsevier, vol. 86(C), pages 328-337.
    20. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5797-:d:635158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.