IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v169y2020ics0921800919303283.html
   My bibliography  Save this article

Illumination as a material service: A comparison between Ancient Rome and early 19th century London

Author

Listed:
  • Whiting, Kai
  • Carmona, Luis Gabriel
  • Brand-Correa, Lina
  • Simpson, Edward

Abstract

Specific combinations of energy flows, material flows and stocks are responsible for those services that support societal function and development. In this paper, we develop the concept and accounting method for material services, which we define as “those functions that materials contribute to personal or societal activity with the purpose of obtaining or facilitating desired end goals or states, regardless of whether or not a material flow or stock is supplied by the market”. In this respect, material services are an intermediate step that incorporates stock to bridge the gap between resource consumption, accumulation and aspects of wellbeing. We provide a material service case study, which identifies the level of lighting experienced by urban Ancient Romans relative to that enjoyed by inhabitants of 1820s London (the Georgians). Our results show that the average Roman experienced 41,102lm-hour/year, which is more lighting than the Georgian value per capita (at 35,698lm-hour/year). In terms of fuel consumption, Georgians were four times more efficient than their Roman counterparts, but there was a trade-off between materials and energy, given that stock efficiency was 53 times lower than that of the Romans. This trend of improving fuel efficiency at the expense of materials appears to have continued into the 21st century, which holds important implications for sustainable development. Further research needs to be undertaken to ascertain whether this holds true for other material services such as heating, transport and shelter.

Suggested Citation

  • Whiting, Kai & Carmona, Luis Gabriel & Brand-Correa, Lina & Simpson, Edward, 2020. "Illumination as a material service: A comparison between Ancient Rome and early 19th century London," Ecological Economics, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:ecolec:v:169:y:2020:i:c:s0921800919303283
    DOI: 10.1016/j.ecolecon.2019.106502
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800919303283
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2019.106502?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Helmut Haberl & Dominik Wiedenhofer & Karl-Heinz Erb & Christoph Görg & Fridolin Krausmann, 2017. "The Material Stock–Flow–Service Nexus: A New Approach for Tackling the Decoupling Conundrum," Sustainability, MDPI, vol. 9(7), pages 1-19, June.
    2. Steinberger, Julia K. & Roberts, J. Timmons, 2010. "From constraint to sufficiency: The decoupling of energy and carbon from human needs, 1975-2005," Ecological Economics, Elsevier, vol. 70(2), pages 425-433, December.
    3. M. Fischer‐Kowalski & F. Krausmann & S. Giljum & S. Lutter & A. Mayer & S. Bringezu & Y. Moriguchi & H. Schütz & H. Schandl & H. Weisz, 2011. "Methodology and Indicators of Economy‐wide Material Flow Accounting," Journal of Industrial Ecology, Yale University, vol. 15(6), pages 855-876, December.
    4. Day, Rosie & Walker, Gordon & Simcock, Neil, 2016. "Conceptualising energy use and energy poverty using a capabilities framework," Energy Policy, Elsevier, vol. 93(C), pages 255-264.
    5. Roger Fouquet, 2018. "Consumer Surplus from Energy Transitions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    6. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    7. Wiedenhofer, Dominik & Fishman, Tomer & Lauk, Christian & Haas, Willi & Krausmann, Fridolin, 2019. "Integrating Material Stock Dynamics Into Economy-Wide Material Flow Accounting: Concepts, Modelling, and Global Application for 1900–2050," Ecological Economics, Elsevier, vol. 156(C), pages 121-133.
    8. Nakićenović, Nebojša & Grübler, Arnulf & Inaba, Atsushi & Messner, Sabine & Nilsson, Sten & Nishimura, Yoichi & Rogner, Hans-Holger & Schäfer, Andreas & Schrattenholzer, Leo & Strubegger, Manfred & Sw, 1993. "Long-term strategies for mitigating global warming," Energy, Elsevier, vol. 18(5), pages 401-401.
    9. Thomas Schaubroeck & Benedetto Rugani, 2017. "A Revision of What Life Cycle Sustainability Assessment Should Entail: Towards Modeling the Net Impact on Human Well†Being," Journal of Industrial Ecology, Yale University, vol. 21(6), pages 1464-1477, December.
    10. Kai Whiting & Leonidas Konstantakos & Angeles Carrasco & Luis Gabriel Carmona, 2018. "Sustainable Development, Wellbeing and Material Consumption: A Stoic Perspective," Sustainability, MDPI, vol. 10(2), pages 1-20, February.
    11. Luis Gabriel Carmona & Kai Whiting & Angeles Carrasco & Tânia Sousa & Tiago Domingos, 2017. "Material Services with Both Eyes Wide Open," Sustainability, MDPI, vol. 9(9), pages 1-23, August.
    12. Gerber, Julien-François & Scheidel, Arnim, 2018. "In Search of Substantive Economics: Comparing Today's Two Major Socio-metabolic Approaches to the Economy – MEFA and MuSIASEM," Ecological Economics, Elsevier, vol. 144(C), pages 186-194.
    13. Helmut Haberl & Dominik Wiedenhofer & Stefan Pauliuk & Fridolin Krausmann & Daniel B. Müller & Marina Fischer-Kowalski, 2019. "Contributions of sociometabolic research to sustainability science," Nature Sustainability, Nature, vol. 2(3), pages 173-184, March.
    14. Roger Fouquet, 2008. "Heat, Power and Light," Books, Edward Elgar Publishing, number 4061.
    15. Schaeffer, Roberto & Wirtshafter, Robert M., 1992. "An exergy analysis of the Brazilian economy: From energy production to final energy use," Energy, Elsevier, vol. 17(9), pages 841-855.
    16. Mayer, Andreas & Haas, Willi & Wiedenhofer, Dominik, 2017. "How Countries' Resource Use History Matters for Human Well-being – An Investigation of Global Patterns in Cumulative Material Flows from 1950 to 2010," Ecological Economics, Elsevier, vol. 134(C), pages 1-10.
    17. Nakićenović, Nebojsa & Gilli, Paul Viktor & Kurz, Rainer, 1996. "Regional and global exergy and energy efficiencies," Energy, Elsevier, vol. 21(3), pages 223-237.
    18. Martha Nussbaum, 2003. "Capabilities As Fundamental Entitlements: Sen And Social Justice," Feminist Economics, Taylor & Francis Journals, vol. 9(2-3), pages 33-59.
    19. Behrens, Arno & Giljum, Stefan & Kovanda, Jan & Niza, Samuel, 2007. "The material basis of the global economy: Worldwide patterns of natural resource extraction and their implications for sustainable resource use policies," Ecological Economics, Elsevier, vol. 64(2), pages 444-453, December.
    20. Cullen, Jonathan M. & Allwood, Julian M., 2010. "The efficient use of energy: Tracing the global flow of energy from fuel to service," Energy Policy, Elsevier, vol. 38(1), pages 75-81, January.
    21. Narasimha D. Rao & Jihoon Min, 2018. "Decent Living Standards: Material Prerequisites for Human Wellbeing," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 138(1), pages 225-244, July.
    22. Heun, Matthew Kuperus & Owen, Anne & Brockway, Paul E., 2018. "A physical supply-use table framework for energy analysis on the energy conversion chain," Applied Energy, Elsevier, vol. 226(C), pages 1134-1162.
    23. Brand-Correa, Lina I. & Steinberger, Julia K., 2017. "A Framework for Decoupling Human Need Satisfaction From Energy Use," Ecological Economics, Elsevier, vol. 141(C), pages 43-52.
    24. Whiting, Kai & Carmona, Luis Gabriel & Sousa, Tânia, 2017. "A review of the use of exergy to evaluate the sustainability of fossil fuels and non-fuel mineral depletion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 202-211.
    25. Goeller, H E & Weinberg, Alvin M, 1978. "The Age of Substitutability," American Economic Review, American Economic Association, vol. 68(6), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Virág, Doris & Wiedenhofer, Dominik & Baumgart, André & Matej, Sarah & Krausmann, Fridolin & Min, Jihoon & Rao, Narasimha D. & Haberl, Helmut, 2022. "How much infrastructure is required to support decent mobility for all? An exploratory assessment," Ecological Economics, Elsevier, vol. 200(C).
    2. Dombi, Mihály, 2021. "Types of planning systems and effects on construction material volumes: An explanatory analysis in Europe," Land Use Policy, Elsevier, vol. 109(C).
    3. Grabher, Harald F. & Erb, Karlheinz & Singh, Simron & Haberl, Helmut, 2024. "Household energy systems based on biomass: Tracing material flows from source to service in rural Ethiopia," Ecological Economics, Elsevier, vol. 217(C).
    4. Tomer Fishman & Niko Heeren & Stefan Pauliuk & Peter Berrill & Qingshi Tu & Paul Wolfram & Edgar G. Hertwich, 2021. "A comprehensive set of global scenarios of housing, mobility, and material efficiency for material cycles and energy systems modeling," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 305-320, April.
    5. Luis Gabriel Carmona & Kai Whiting & Helmut Haberl & Tânia Sousa, 2021. "The use of steel in the United Kingdom's transport sector: A stock–flow–service nexus case study," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 125-143, February.
    6. Matthew Kuperus Heun & Zeke Marshall & Emmanuel Aramendia & Paul E. Brockway, 2020. "The Energy and Exergy of Light with Application to Societal Exergy Analysis," Energies, MDPI, vol. 13(20), pages 1-24, October.
    7. Haberl, Helmut & Schmid, Martin & Haas, Willi & Wiedenhofer, Dominik & Rau, Henrike & Winiwarter, Verena, 2021. "Stocks, flows, services and practices: Nexus approaches to sustainable social metabolism," Ecological Economics, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Virág, Doris & Wiedenhofer, Dominik & Baumgart, André & Matej, Sarah & Krausmann, Fridolin & Min, Jihoon & Rao, Narasimha D. & Haberl, Helmut, 2022. "How much infrastructure is required to support decent mobility for all? An exploratory assessment," Ecological Economics, Elsevier, vol. 200(C).
    2. Haberl, Helmut & Schmid, Martin & Haas, Willi & Wiedenhofer, Dominik & Rau, Henrike & Winiwarter, Verena, 2021. "Stocks, flows, services and practices: Nexus approaches to sustainable social metabolism," Ecological Economics, Elsevier, vol. 182(C).
    3. Plank, Christina & Liehr, Stefan & Hummel, Diana & Wiedenhofer, Dominik & Haberl, Helmut & Görg, Christoph, 2021. "Doing more with less: Provisioning systems and the transformation of the stock-flow-service nexus," Ecological Economics, Elsevier, vol. 187(C).
    4. Luis Gabriel Carmona & Kai Whiting & Helmut Haberl & Tânia Sousa, 2021. "The use of steel in the United Kingdom's transport sector: A stock–flow–service nexus case study," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 125-143, February.
    5. Brand-Correa, Lina I. & Steinberger, Julia K., 2017. "A Framework for Decoupling Human Need Satisfaction From Energy Use," Ecological Economics, Elsevier, vol. 141(C), pages 43-52.
    6. Sousa, Tânia & Brockway, Paul E. & Cullen, Jonathan M. & Henriques, Sofia Teives & Miller, Jack & Serrenho, André Cabrera & Domingos, Tiago, 2017. "The Need for Robust, Consistent Methods in Societal Exergy Accounting," Ecological Economics, Elsevier, vol. 141(C), pages 11-21.
    7. Heun, Matthew Kuperus & Owen, Anne & Brockway, Paul E., 2018. "A physical supply-use table framework for energy analysis on the energy conversion chain," Applied Energy, Elsevier, vol. 226(C), pages 1134-1162.
    8. Okushima, Shinichiro, 2021. "Energy poor need more energy, but do they need more carbon? Evaluation of people's basic carbon needs," Ecological Economics, Elsevier, vol. 187(C).
    9. Luis Gabriel Carmona & Kai Whiting & Angeles Carrasco & Tânia Sousa & Tiago Domingos, 2017. "Material Services with Both Eyes Wide Open," Sustainability, MDPI, vol. 9(9), pages 1-23, August.
    10. Vita, Gibran & Lundström, Johan R. & Hertwich, Edgar G. & Quist, Jaco & Ivanova, Diana & Stadler, Konstantin & Wood, Richard, 2019. "The Environmental Impact of Green Consumption and Sufficiency Lifestyles Scenarios in Europe: Connecting Local Sustainability Visions to Global Consequences," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    11. Dorothée Charlier & Florian Fizaine, 2020. "Does Becoming Richer Lead to a Reduction in Natural Resource Consumption? An Empirical Refutation of the Kuznets Material Curve," Working Papers 2020.05, FAERE - French Association of Environmental and Resource Economists.
    12. Samarakoon, Shanil, 2019. "A justice and wellbeing centered framework for analysing energy poverty in the Global South," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    13. Claudia Kettner & Angela Köppl & Sigrid Stagl, 2014. "Towards an Operational Measurement of Socio-ecological Performance. WWWforEurope Working Paper No. 52," WIFO Studies, WIFO, number 47154.
    14. Roque G Stagnitta & Matteo V Rocco & Emanuela Colombo, 2020. "A Complementary Approach to Traditional Energy Balances for Assessing Energy Efficiency Measures in Final Uses: The Case of Space Heating and Cooling in Argentina," Sustainability, MDPI, vol. 12(16), pages 1-29, August.
    15. Jan Streeck & Stefan Pauliuk & Hanspeter Wieland & Dominik Wiedenhofer, 2023. "A review of methods to trace material flows into final products in dynamic material flow analysis: From industry shipments in physical units to monetary input–output tables, Part 1," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 436-456, April.
    16. Liesbeth de Schutter & Stefan Giljum & Tiina Häyhä & Martin Bruckner & Asjad Naqvi & Ines Omann & Sigrid Stagl, 2019. "Bioeconomy Transitions through the Lens of Coupled Social-Ecological Systems: A Framework for Place-Based Responsibility in the Global Resource System," Sustainability, MDPI, vol. 11(20), pages 1-23, October.
    17. Wu, Rongxin & Lin, Boqiang, 2021. "Does industrial agglomeration improve effective energy service: An empirical study of China’s iron and steel industry," Applied Energy, Elsevier, vol. 295(C).
    18. Kai Whiting & Leonidas Konstantakos & Angeles Carrasco & Luis Gabriel Carmona, 2018. "Sustainable Development, Wellbeing and Material Consumption: A Stoic Perspective," Sustainability, MDPI, vol. 10(2), pages 1-20, February.
    19. Gereon tho Pesch & Anna Kristín Einarsdóttir & Kevin Joseph Dillman & Jukka Heinonen, 2023. "Energy Consumption and Human Well-Being: A Systematic Review," Energies, MDPI, vol. 16(18), pages 1-22, September.
    20. Setu Pelz & Shonali Pachauri & Sebastian Groh, 2018. "A critical review of modern approaches for multidimensional energy poverty measurement," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:169:y:2020:i:c:s0921800919303283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.