IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5758-d634473.html
   My bibliography  Save this article

Intermetallic Compounds Synthesized by Mechanical Alloying for Solid-State Hydrogen Storage: A Review

Author

Listed:
  • Yuchen Liu

    (FEMTO-ST Institute, University Bourgogne Franche-Comté, UTBM, CNRS, 90000 Belfort, France)

  • Djafar Chabane

    (FEMTO-ST Institute, University Bourgogne Franche-Comté, UTBM, CNRS, 90000 Belfort, France)

  • Omar Elkedim

    (FEMTO-ST Institute, University Bourgogne Franche-Comté, UTBM, CNRS, 90000 Belfort, France)

Abstract

Hydrogen energy is a very attractive option in dealing with the existing energy crisis. For the development of a hydrogen energy economy, hydrogen storage technology must be improved to over the storage limitations. Compared with traditional hydrogen storage technology, the prospect of hydrogen storage materials is broader. Among all types of hydrogen storage materials, solid hydrogen storage materials are most promising and have the most safety security. Solid hydrogen storage materials include high surface area physical adsorption materials and interstitial and non-interstitial hydrides. Among them, interstitial hydrides, also called intermetallic hydrides, are hydrides formed by transition metals or their alloys. The main alloy types are A 2 B, AB, AB 2 , AB 3 , A 2 B 7 , AB 5 , and BCC. A is a hydride that easily forms metal (such as Ti, V, Zr, and Y), while B is a non-hydride forming metal (such as Cr, Mn, and Fe). The development of intermetallic compounds as hydrogen storage materials is very attractive because their volumetric capacity is much higher (80–160 kgH 2 m − 3 ) than the gaseous storage method and the liquid storage method in a cryogenic tank (40 and 71 kgH 2 m − 3 ). Additionally, for hydrogen absorption and desorption reactions, the environmental requirements are lower than that of physical adsorption materials (ultra-low temperature) and the simplicity of the procedure is higher than that of non-interstitial hydrogen storage materials (multiple steps and a complex catalyst). In addition, there are abundant raw materials and diverse ingredients. For the synthesis and optimization of intermetallic compounds, in addition to traditional melting methods, mechanical alloying is a very important synthesis method, which has a unique synthesis mechanism and advantages. This review focuses on the application of mechanical alloying methods in the field of solid hydrogen storage materials.

Suggested Citation

  • Yuchen Liu & Djafar Chabane & Omar Elkedim, 2021. "Intermetallic Compounds Synthesized by Mechanical Alloying for Solid-State Hydrogen Storage: A Review," Energies, MDPI, vol. 14(18), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5758-:d:634473
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5758/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5758/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shafiee, Shahriar & Topal, Erkan, 2009. "When will fossil fuel reserves be diminished?," Energy Policy, Elsevier, vol. 37(1), pages 181-189, January.
    2. Xie, XiuBo & Hou, Chuanxin & Chen, Chunguang & Sun, Xueqin & Pang, Yu & Zhang, Yuping & Yu, Ronghai & Wang, Bing & Du, Wei, 2020. "First-principles studies in Mg-based hydrogen storage Materials: A review," Energy, Elsevier, vol. 211(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ádám Révész, 2023. "Improved Hydrogen Storage Performance of Novel Metal Hydrides and Their Composites," Energies, MDPI, vol. 16(8), pages 1-3, April.
    2. Antoni Żywczak & Łukasz Gondek & Joanna Czub & Piotr Janusz & Nivas Babu Selvaraj & Akito Takasaki, 2022. "Physical Properties of Ti 45 Zr 38 Fe 17 Alloy and Its Amorphous Hydride," Energies, MDPI, vol. 15(12), pages 1-8, June.
    3. Hao, Xinyang & Salhi, Issam & Laghrouche, Salah & Ait Amirat, Youcef & Djerdir, Abdesslem, 2023. "Multiple inputs multi-phase interleaved boost converter for fuel cell systems applications," Renewable Energy, Elsevier, vol. 204(C), pages 521-531.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aye, Goodness & Gupta, Rangan & Hammoudeh, Shawkat & Kim, Won Joong, 2015. "Forecasting the price of gold using dynamic model averaging," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 257-266.
    2. Ali Mubarak Al-Qahtani, 2023. "A Comprehensive Review in Microwave Pyrolysis of Biomass, Syngas Production and Utilisation," Energies, MDPI, vol. 16(19), pages 1-16, September.
    3. Jen-Yu Lee & Tien-Thinh Nguyen & Hong-Giang Nguyen & Jen-Yao Lee, 2022. "Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe," Energies, MDPI, vol. 15(11), pages 1-15, May.
    4. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.
    5. Ritter, Hendrik & Zimmermann, Karl, 2019. "Cap-and-Trade Policy vs. Carbon Taxation: Of Leakage and Linkage," EconStor Preprints 197796, ZBW - Leibniz Information Centre for Economics.
    6. Yassir El Karkri & Alexis B. Rey-Boué & Hassan El Moussaoui & Johannes Stöckl & Thomas I. Strasser, 2019. "Improved Control of Grid-connected DFIG-based Wind Turbine using Proportional-Resonant Regulators during Unbalanced Grid," Energies, MDPI, vol. 12(21), pages 1-21, October.
    7. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    8. Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2016. "A review on unitized regenerative fuel cell technologies, part-A: Unitized regenerative proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 961-977.
    9. Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
    10. Foster, John & Bell, William Paul & Wild, Phillip & Sharma, Deepak & Sandu, Suwin & Froome, Craig & Wagner, Liam & Misra, Suchi & Bagia, Ravindra, 2013. "Analysis of institutional adaptability to redress electricity infrastructure vulnerability due to climate change," MPRA Paper 47787, University Library of Munich, Germany.
    11. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    12. Leong, Jun Xing & Daud, Wan Ramli Wan & Ghasemi, Mostafa & Liew, Kien Ben & Ismail, Manal, 2013. "Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 575-587.
    13. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Experimental Validation of Water Flow Glazing: Transient Response in Real Test Rooms," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    14. Johannes Karlsson & Anders Grauers, 2023. "Agent-Based Investigation of Charger Queues and Utilization of Public Chargers for Electric Long-Haul Trucks," Energies, MDPI, vol. 16(12), pages 1-25, June.
    15. Meryem Sena Akkus, 2022. "Investigation of Hydrogen Production Performance Using Nanoporous NiCr and NiV Alloys in KBH 4 Hydrolysis," Energies, MDPI, vol. 15(24), pages 1-15, December.
    16. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M. & Jiang, Lide & French, Steven P. & Shi, Xuan & Smith, Brennan T. & Neary, Vincent S. & Stewart, Kevin M., 2012. "National geodatabase of tidal stream power resource in USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3326-3338.
    17. Awad, Omar I. & Ali, Obed M. & Mamat, Rizalman & Abdullah, A.A. & Najafi, G. & Kamarulzaman, M.K. & Yusri, I.M. & Noor, M.M., 2017. "Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1232-1242.
    18. Bellekom, Sandra & Benders, René & Pelgröm, Steef & Moll, Henk, 2012. "Electric cars and wind energy: Two problems, one solution? A study to combine wind energy and electric cars in 2020 in The Netherlands," Energy, Elsevier, vol. 45(1), pages 859-866.
    19. Ahmad, Nasir & Derrible, Sybil, 2018. "An information theory based robustness analysis of energy mix in US States," Energy Policy, Elsevier, vol. 120(C), pages 167-174.
    20. Mohammadzadeh Bina, Saeid & Jalilinasrabady, Saeid & Fujii, Hikari & Pambudi, Nugroho Agung, 2018. "Classification of geothermal resources in Indonesia by applying exergy concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 499-506.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5758-:d:634473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.